MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Unicode version

Theorem bcth 19284
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having an empty interior), so some subset  M `
 k must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 19283 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
bcth  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Distinct variable groups:    D, k    k, J    k, M    k, X

Proof of Theorem bcth
Dummy variables  n  r  x  z  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 732 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  D  e.  ( CMet `  X
) )
3 eleq1 2498 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  X  <->  y  e.  X ) )
4 eleq1 2498 . . . . . . . . . . 11  |-  ( r  =  m  ->  (
r  e.  RR+  <->  m  e.  RR+ ) )
53, 4bi2anan9 845 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( x  e.  X  /\  r  e.  RR+ )  <->  ( y  e.  X  /\  m  e.  RR+ ) ) )
6 simpr 449 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  r  =  m )
76breq1d 4224 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( r  <  (
1  /  k )  <-> 
m  <  ( 1  /  k ) ) )
8 oveq12 6092 . . . . . . . . . . . . 13  |-  ( ( x  =  y  /\  r  =  m )  ->  ( x ( ball `  D ) r )  =  ( y (
ball `  D )
m ) )
98fveq2d 5734 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( y
( ball `  D )
m ) ) )
109sseq1d 3377 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  <->  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )
117, 10anbi12d 693 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( r  < 
( 1  /  k
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  k
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) ) ) )
125, 11anbi12d 693 . . . . . . . . 9  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
1312cbvopabv 4279 . . . . . . . 8  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }
14 oveq2 6091 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
1  /  k )  =  ( 1  /  n ) )
1514breq2d 4226 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
m  <  ( 1  /  k )  <->  m  <  ( 1  /  n ) ) )
16 fveq2 5730 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( M `  k )  =  ( M `  n ) )
1716difeq2d 3467 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) )
1817sseq2d 3378 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) )
1915, 18anbi12d 693 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) ) )
2019anbi2d 686 . . . . . . . . 9  |-  ( k  =  n  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) ) ) )
2120opabbidv 4273 . . . . . . . 8  |-  ( k  =  n  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
2213, 21syl5eq 2482 . . . . . . 7  |-  ( k  =  n  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
23 fveq2 5730 . . . . . . . . . . . 12  |-  ( z  =  g  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  g )
)
2423difeq1d 3466 . . . . . . . . . . 11  |-  ( z  =  g  ->  (
( ( ball `  D
) `  z )  \  ( M `  n ) )  =  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) )
2524sseq2d 3378 . . . . . . . . . 10  |-  ( z  =  g  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) )
2625anbi2d 686 . . . . . . . . 9  |-  ( z  =  g  ->  (
( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) ) )
2726anbi2d 686 . . . . . . . 8  |-  ( z  =  g  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) ) ) ) )
2827opabbidv 4273 . . . . . . 7  |-  ( z  =  g  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
2922, 28cbvmpt2v 6154 . . . . . 6  |-  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )  =  ( n  e.  NN ,  g  e.  ( X  X.  RR+ )  |->  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
30 simplr 733 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  M : NN
--> ( Clsd `  J
) )
31 simpr 449 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
3216fveq2d 5734 . . . . . . . . 9  |-  ( k  =  n  ->  (
( int `  J
) `  ( M `  k ) )  =  ( ( int `  J
) `  ( M `  n ) ) )
3332eqeq1d 2446 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  ( ( int `  J
) `  ( M `  n ) )  =  (/) ) )
3433cbvralv 2934 . . . . . . 7  |-  ( A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) 
<-> 
A. n  e.  NN  ( ( int `  J
) `  ( M `  n ) )  =  (/) )
3531, 34sylib 190 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. n  e.  NN  ( ( int `  J ) `  ( M `  n )
)  =  (/) )
361, 2, 29, 30, 35bcthlem5 19283 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  ( ( int `  J ) `
 U. ran  M
)  =  (/) )
3736ex 425 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  ( A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/)  ->  ( ( int `  J ) `  U. ran  M )  =  (/) ) )
3837necon3ad 2639 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  (
( ( int `  J
) `  U. ran  M
)  =/=  (/)  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) ) )
39383impia 1151 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )
40 df-ne 2603 . . . 4  |-  ( ( ( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4140rexbii 2732 . . 3  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
42 rexnal 2718 . . 3  |-  ( E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4341, 42bitri 242 . 2  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4439, 43sylibr 205 1  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    \ cdif 3319    C_ wss 3322   (/)c0 3630   U.cuni 4017   class class class wbr 4214   {copab 4267    X. cxp 4878   ran crn 4881   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1c1 8993    < clt 9122    / cdiv 9679   NNcn 10002   RR+crp 10614   ballcbl 16690   MetOpencmopn 16693   Clsdccld 17082   intcnt 17083   clsccl 17084   CMetcms 19209
This theorem is referenced by:  bcth2  19285  bcth3  19286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-dc 8328  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-n0 10224  df-z 10285  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ico 10924  df-rest 13652  df-topgen 13669  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-top 16965  df-bases 16967  df-topon 16968  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lm 17295  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-cfil 19210  df-cau 19211  df-cmet 19212
  Copyright terms: Public domain W3C validator