MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth3 Unicode version

Theorem bcth3 19155
Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
bcth3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J  /\  A. k  e.  NN  (
( cls `  J
) `  ( M `  k ) )  =  X )  ->  (
( cls `  J
) `  |^| ran  M
)  =  X )
Distinct variable groups:    D, k    k, J    k, M    k, X

Proof of Theorem bcth3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cmetmet 19112 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 18275 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
31, 2syl 16 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( * Met `  X
) )
4 bcth.2 . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
54mopntop 18362 . . . . . . . . 9  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
65ad2antrr 707 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  J  e.  Top )
7 ffvelrn 5809 . . . . . . . . . 10  |-  ( ( M : NN --> J  /\  k  e.  NN )  ->  ( M `  k
)  e.  J )
8 elssuni 3987 . . . . . . . . . 10  |-  ( ( M `  k )  e.  J  ->  ( M `  k )  C_ 
U. J )
97, 8syl 16 . . . . . . . . 9  |-  ( ( M : NN --> J  /\  k  e.  NN )  ->  ( M `  k
)  C_  U. J )
109adantll 695 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  ( M `  k )  C_ 
U. J )
11 eqid 2389 . . . . . . . . 9  |-  U. J  =  U. J
1211clsval2 17039 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( M `  k ) 
C_  U. J )  -> 
( ( cls `  J
) `  ( M `  k ) )  =  ( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )
136, 10, 12syl2anc 643 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( cls `  J
) `  ( M `  k ) )  =  ( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )
144mopnuni 18363 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
1514ad2antrr 707 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  X  =  U. J )
1613, 15eqeq12d 2403 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( ( cls `  J
) `  ( M `  k ) )  =  X  <->  ( U. J  \  ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )  =  U. J
) )
17 difeq2 3404 . . . . . . . 8  |-  ( ( U. J  \  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )  =  U. J  ->  ( U. J  \ 
( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  ( U. J  \  U. J ) )
18 difid 3641 . . . . . . . 8  |-  ( U. J  \  U. J )  =  (/)
1917, 18syl6eq 2437 . . . . . . 7  |-  ( ( U. J  \  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )  =  U. J  ->  ( U. J  \ 
( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  (/) )
20 difss 3419 . . . . . . . . . . . 12  |-  ( U. J  \  ( M `  k ) )  C_  U. J
2111ntropn 17038 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( U. J  \  ( M `  k )
)  C_  U. J )  ->  ( ( int `  J ) `  ( U. J  \  ( M `  k )
) )  e.  J
)
226, 20, 21sylancl 644 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) )  e.  J )
23 elssuni 3987 . . . . . . . . . . 11  |-  ( ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) )  e.  J  ->  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) 
C_  U. J )
2422, 23syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) 
C_  U. J )
25 dfss4 3520 . . . . . . . . . 10  |-  ( ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) 
C_  U. J  <->  ( U. J  \  ( U. J  \  ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )
2624, 25sylib 189 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  ( U. J  \  ( U. J  \  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  ( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )
27 id 20 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN )
28 elfvdm 5699 . . . . . . . . . . . . . 14  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
29 difexg 4294 . . . . . . . . . . . . . 14  |-  ( X  e.  dom  * Met  ->  ( X  \  ( M `  k )
)  e.  _V )
3028, 29syl 16 . . . . . . . . . . . . 13  |-  ( D  e.  ( * Met `  X )  ->  ( X  \  ( M `  k ) )  e. 
_V )
3130adantr 452 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( X  \  ( M `  k ) )  e. 
_V )
32 fveq2 5670 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  ( M `  x )  =  ( M `  k ) )
3332difeq2d 3410 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  ( X  \  ( M `  x ) )  =  ( X  \  ( M `  k )
) )
34 eqid 2389 . . . . . . . . . . . . 13  |-  ( x  e.  NN  |->  ( X 
\  ( M `  x ) ) )  =  ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) )
3533, 34fvmptg 5745 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  ( X  \  ( M `  k )
)  e.  _V )  ->  ( ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) ) `  k )  =  ( X  \  ( M `
 k ) ) )
3627, 31, 35syl2anr 465 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
)  =  ( X 
\  ( M `  k ) ) )
3715difeq1d 3409 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  ( X  \  ( M `  k ) )  =  ( U. J  \ 
( M `  k
) ) )
3836, 37eqtrd 2421 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
)  =  ( U. J  \  ( M `  k ) ) )
3938fveq2d 5674 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =  ( ( int `  J ) `
 ( U. J  \  ( M `  k
) ) ) )
4026, 39eqtr4d 2424 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  ( U. J  \  ( U. J  \  (
( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) ) )
4140eqeq1d 2397 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( U. J  \ 
( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) ) )  =  (/)  <->  (
( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =  (/) ) )
4219, 41syl5ib 211 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( U. J  \ 
( ( int `  J
) `  ( U. J  \  ( M `  k ) ) ) )  =  U. J  ->  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =  (/) ) )
4316, 42sylbid 207 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  (
( ( cls `  J
) `  ( M `  k ) )  =  X  ->  ( ( int `  J ) `  ( ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) ) `  k ) )  =  (/) ) )
4443ralimdva 2729 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( A. k  e.  NN  ( ( cls `  J
) `  ( M `  k ) )  =  X  ->  A. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =  (/) ) )
453, 44sylan 458 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  -> 
( A. k  e.  NN  ( ( cls `  J ) `  ( M `  k )
)  =  X  ->  A. k  e.  NN  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =  (/) ) )
46 ffvelrn 5809 . . . . . . . . 9  |-  ( ( M : NN --> J  /\  x  e.  NN )  ->  ( M `  x
)  e.  J )
4714difeq1d 3409 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  ( X  \  ( M `  x ) )  =  ( U. J  \ 
( M `  x
) ) )
4847adantr 452 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( M `  x )  e.  J
)  ->  ( X  \  ( M `  x
) )  =  ( U. J  \  ( M `  x )
) )
4911opncld 17022 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( M `  x )  e.  J )  -> 
( U. J  \ 
( M `  x
) )  e.  (
Clsd `  J )
)
505, 49sylan 458 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( M `  x )  e.  J
)  ->  ( U. J  \  ( M `  x ) )  e.  ( Clsd `  J
) )
5148, 50eqeltrd 2463 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  ( M `  x )  e.  J
)  ->  ( X  \  ( M `  x
) )  e.  (
Clsd `  J )
)
5246, 51sylan2 461 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( M : NN
--> J  /\  x  e.  NN ) )  -> 
( X  \  ( M `  x )
)  e.  ( Clsd `  J ) )
5352anassrs 630 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  x  e.  NN )  ->  ( X  \  ( M `  x ) )  e.  ( Clsd `  J
) )
5453ralrimiva 2734 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  A. x  e.  NN  ( X  \ 
( M `  x
) )  e.  (
Clsd `  J )
)
553, 54sylan 458 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  ->  A. x  e.  NN  ( X  \  ( M `  x )
)  e.  ( Clsd `  J ) )
5634fmpt 5831 . . . . 5  |-  ( A. x  e.  NN  ( X  \  ( M `  x ) )  e.  ( Clsd `  J
)  <->  ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) ) : NN --> ( Clsd `  J
) )
5755, 56sylib 189 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  -> 
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) : NN --> ( Clsd `  J )
)
58 nne 2556 . . . . . . 7  |-  ( -.  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =/=  (/)  <->  ( ( int `  J ) `  ( ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) ) `  k ) )  =  (/) )
5958ralbii 2675 . . . . . 6  |-  ( A. k  e.  NN  -.  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =/=  (/)  <->  A. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =  (/) )
60 ralnex 2661 . . . . . 6  |-  ( A. k  e.  NN  -.  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =/=  (/)  <->  -.  E. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =/=  (/) )
6159, 60bitr3i 243 . . . . 5  |-  ( A. k  e.  NN  (
( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =  (/)  <->  -.  E. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =/=  (/) )
624bcth 19153 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) : NN --> ( Clsd `  J )  /\  (
( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =/=  (/) )
63623expia 1155 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) : NN --> ( Clsd `  J ) )  -> 
( ( ( int `  J ) `  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) ) )  =/=  (/)  ->  E. k  e.  NN  ( ( int `  J
) `  ( (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) `  k ) )  =/=  (/) ) )
6463necon1bd 2620 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) : NN --> ( Clsd `  J ) )  -> 
( -.  E. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =/=  (/)  ->  (
( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  (/) ) )
6561, 64syl5bi 209 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) : NN --> ( Clsd `  J ) )  -> 
( A. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =  (/)  ->  ( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  (/) ) )
6657, 65syldan 457 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  -> 
( A. k  e.  NN  ( ( int `  J ) `  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
) )  =  (/)  ->  ( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  (/) ) )
67 difeq2 3404 . . . . 5  |-  ( ( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  (/)  ->  ( U. J  \ 
( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) ) )  =  ( U. J  \  (/) ) )
68 difexg 4294 . . . . . . . . . . . . . . . 16  |-  ( X  e.  dom  * Met  ->  ( X  \  ( M `  x )
)  e.  _V )
6928, 68syl 16 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( * Met `  X )  ->  ( X  \  ( M `  x ) )  e. 
_V )
7069ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  x  e.  NN )  ->  ( X  \  ( M `  x ) )  e. 
_V )
7170ralrimiva 2734 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  A. x  e.  NN  ( X  \ 
( M `  x
) )  e.  _V )
7234fnmpt 5513 . . . . . . . . . . . . 13  |-  ( A. x  e.  NN  ( X  \  ( M `  x ) )  e. 
_V  ->  ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) )  Fn  NN )
73 fniunfv 5935 . . . . . . . . . . . . 13  |-  ( ( x  e.  NN  |->  ( X  \  ( M `
 x ) ) )  Fn  NN  ->  U_ k  e.  NN  (
( x  e.  NN  |->  ( X  \  ( M `  x )
) ) `  k
)  =  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) ) )
7471, 72, 733syl 19 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U_ k  e.  NN  ( ( x  e.  NN  |->  ( X 
\  ( M `  x ) ) ) `
 k )  = 
U. ran  ( x  e.  NN  |->  ( X  \ 
( M `  x
) ) ) )
7536iuneq2dv 4058 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U_ k  e.  NN  ( ( x  e.  NN  |->  ( X 
\  ( M `  x ) ) ) `
 k )  = 
U_ k  e.  NN  ( X  \  ( M `  k )
) )
7633cbviunv 4073 . . . . . . . . . . . . 13  |-  U_ x  e.  NN  ( X  \ 
( M `  x
) )  =  U_ k  e.  NN  ( X  \  ( M `  k ) )
7775, 76syl6eqr 2439 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U_ k  e.  NN  ( ( x  e.  NN  |->  ( X 
\  ( M `  x ) ) ) `
 k )  = 
U_ x  e.  NN  ( X  \  ( M `  x )
) )
7874, 77eqtr3d 2423 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) )  =  U_ x  e.  NN  ( X  \  ( M `  x ) ) )
79 iundif2 4101 . . . . . . . . . . 11  |-  U_ x  e.  NN  ( X  \ 
( M `  x
) )  =  ( X  \  |^|_ x  e.  NN  ( M `  x ) )
8078, 79syl6eq 2437 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) )  =  ( X  \  |^|_ x  e.  NN  ( M `  x ) ) )
81 ffn 5533 . . . . . . . . . . . . 13  |-  ( M : NN --> J  ->  M  Fn  NN )
8281adantl 453 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  M  Fn  NN )
83 fniinfv 5726 . . . . . . . . . . . 12  |-  ( M  Fn  NN  ->  |^|_ x  e.  NN  ( M `  x )  =  |^| ran 
M )
8482, 83syl 16 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  |^|_ x  e.  NN  ( M `  x )  =  |^| ran 
M )
8584difeq2d 3410 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( X  \  |^|_ x  e.  NN  ( M `  x ) )  =  ( X 
\  |^| ran  M ) )
8614adantr 452 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  X  =  U. J )
8786difeq1d 3409 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( X  \  |^| ran  M
)  =  ( U. J  \  |^| ran  M
) )
8880, 85, 873eqtrd 2425 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) )  =  ( U. J  \  |^| ran 
M ) )
8988fveq2d 5674 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  (
( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  ( ( int `  J
) `  ( U. J  \  |^| ran  M
) ) )
9089difeq2d 3410 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( U. J  \  (
( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) ) )  =  ( U. J  \ 
( ( int `  J
) `  ( U. J  \  |^| ran  M
) ) ) )
915adantr 452 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  J  e.  Top )
92 1nn 9945 . . . . . . . . 9  |-  1  e.  NN
93 biidd 229 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  ->  |^| ran  M 
C_  U. J )  <->  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  |^| ran  M  C_  U. J ) ) )
94 fnfvelrn 5808 . . . . . . . . . . . . . 14  |-  ( ( M  Fn  NN  /\  k  e.  NN )  ->  ( M `  k
)  e.  ran  M
)
9582, 94sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  ( M `  k )  e.  ran  M )
96 intss1 4009 . . . . . . . . . . . . 13  |-  ( ( M `  k )  e.  ran  M  ->  |^| ran  M  C_  ( M `  k )
)
9795, 96syl 16 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  |^| ran  M 
C_  ( M `  k ) )
9897, 10sstrd 3303 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  /\  k  e.  NN )  ->  |^| ran  M 
C_  U. J )
9998expcom 425 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  ->  |^| ran  M 
C_  U. J ) )
10093, 99vtoclga 2962 . . . . . . . . 9  |-  ( 1  e.  NN  ->  (
( D  e.  ( * Met `  X
)  /\  M : NN
--> J )  ->  |^| ran  M 
C_  U. J ) )
10192, 100ax-mp 8 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  |^| ran  M 
C_  U. J )
10211clsval2 17039 . . . . . . . 8  |-  ( ( J  e.  Top  /\  |^|
ran  M  C_  U. J
)  ->  ( ( cls `  J ) `  |^| ran  M )  =  ( U. J  \ 
( ( int `  J
) `  ( U. J  \  |^| ran  M
) ) ) )
10391, 101, 102syl2anc 643 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  (
( cls `  J
) `  |^| ran  M
)  =  ( U. J  \  ( ( int `  J ) `  ( U. J  \  |^| ran  M ) ) ) )
10490, 103eqtr4d 2424 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( U. J  \  (
( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) ) )  =  ( ( cls `  J
) `  |^| ran  M
) )
105 dif0 3643 . . . . . . 7  |-  ( U. J  \  (/) )  =  U. J
10686, 105syl6reqr 2440 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  ( U. J  \  (/) )  =  X )
107104, 106eqeq12d 2403 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  (
( U. J  \ 
( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) ) )  =  ( U. J  \  (/) )  <->  ( ( cls `  J ) `  |^| ran 
M )  =  X ) )
10867, 107syl5ib 211 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  M : NN --> J )  ->  (
( ( int `  J
) `  U. ran  (
x  e.  NN  |->  ( X  \  ( M `
 x ) ) ) )  =  (/)  ->  ( ( cls `  J
) `  |^| ran  M
)  =  X ) )
1093, 108sylan 458 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  -> 
( ( ( int `  J ) `  U. ran  ( x  e.  NN  |->  ( X  \  ( M `  x )
) ) )  =  (/)  ->  ( ( cls `  J ) `  |^| ran 
M )  =  X ) )
11045, 66, 1093syld 53 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J )  -> 
( A. k  e.  NN  ( ( cls `  J ) `  ( M `  k )
)  =  X  -> 
( ( cls `  J
) `  |^| ran  M
)  =  X ) )
1111103impia 1150 1  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> J  /\  A. k  e.  NN  (
( cls `  J
) `  ( M `  k ) )  =  X )  ->  (
( cls `  J
) `  |^| ran  M
)  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   E.wrex 2652   _Vcvv 2901    \ cdif 3262    C_ wss 3265   (/)c0 3573   U.cuni 3959   |^|cint 3994   U_ciun 4037   |^|_ciin 4038    e. cmpt 4209   dom cdm 4820   ran crn 4821    Fn wfn 5391   -->wf 5392   ` cfv 5396   1c1 8926   NNcn 9934   * Metcxmt 16614   Metcme 16615   MetOpencmopn 16619   Topctop 16883   Clsdccld 17005   intcnt 17006   clsccl 17007   CMetcms 19080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-dc 8261  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-er 6843  df-map 6958  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-sup 7383  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-n0 10156  df-z 10217  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ico 10856  df-rest 13579  df-topgen 13596  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-top 16888  df-bases 16890  df-topon 16891  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lm 17217  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-cfil 19081  df-cau 19082  df-cmet 19083
  Copyright terms: Public domain W3C validator