MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem1 Unicode version

Theorem bcthlem1 18746
Description: Lemma for bcth 18751. Substitutions for the function  F. (Contributed by Mario Carneiro, 9-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
Assertion
Ref Expression
bcthlem1  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
Distinct variable groups:    k, r, x, z, A    B, k,
r, x, z    C, r, x    D, k, r, x, z    k, F, r, x, z    k, J, r, x, z    k, M, r, x, z    ph, k,
r, x, z    k, X, r, x, z
Allowed substitution hints:    C( z, k)

Proof of Theorem bcthlem1
StepHypRef Expression
1 opabssxp 4762 . . . . . . 7  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } 
C_  ( X  X.  RR+ )
2 bcthlem.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3 elfvdm 5554 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
42, 3syl 15 . . . . . . . 8  |-  ( ph  ->  X  e.  dom  CMet )
5 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
6 rpssre 10364 . . . . . . . . 9  |-  RR+  C_  RR
75, 6ssexi 4159 . . . . . . . 8  |-  RR+  e.  _V
8 xpexg 4800 . . . . . . . 8  |-  ( ( X  e.  dom  CMet  /\  RR+  e.  _V )  -> 
( X  X.  RR+ )  e.  _V )
94, 7, 8sylancl 643 . . . . . . 7  |-  ( ph  ->  ( X  X.  RR+ )  e.  _V )
10 ssexg 4160 . . . . . . 7  |-  ( ( { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } 
C_  ( X  X.  RR+ )  /\  ( X  X.  RR+ )  e.  _V )  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  e.  _V )
111, 9, 10sylancr 644 . . . . . 6  |-  ( ph  ->  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  e.  _V )
12 oveq2 5866 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
1  /  k )  =  ( 1  /  A ) )
1312breq2d 4035 . . . . . . . . . 10  |-  ( k  =  A  ->  (
r  <  ( 1  /  k )  <->  r  <  ( 1  /  A ) ) )
14 fveq2 5525 . . . . . . . . . . . 12  |-  ( k  =  A  ->  ( M `  k )  =  ( M `  A ) )
1514difeq2d 3294 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) )
1615sseq2d 3206 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  A )
) ) )
1713, 16anbi12d 691 . . . . . . . . 9  |-  ( k  =  A  ->  (
( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( r  <  ( 1  /  A
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  A )
) ) ) )
1817anbi2d 684 . . . . . . . 8  |-  ( k  =  A  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) ) ) ) )
1918opabbidv 4082 . . . . . . 7  |-  ( k  =  A  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) ) ) } )
20 fveq2 5525 . . . . . . . . . . . 12  |-  ( z  =  B  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  B )
)
2120difeq1d 3293 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
( ( ball `  D
) `  z )  \  ( M `  A ) )  =  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) )
2221sseq2d 3206 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) )
2322anbi2d 684 . . . . . . . . 9  |-  ( z  =  B  ->  (
( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) )  <->  ( r  <  ( 1  /  A
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) ) )
2423anbi2d 684 . . . . . . . 8  |-  ( z  =  B  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) ) )  <->  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
2524opabbidv 4082 . . . . . . 7  |-  ( z  =  B  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) ) ) }  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } )
26 bcthlem.5 . . . . . . 7  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
2719, 25, 26ovmpt2g 5982 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ )  /\  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) }  e.  _V )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
2811, 27syl3an3 1217 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ )  /\  ph )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
29283expa 1151 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) )  /\  ph )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
3029ancoms 439 . . 3  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } )
3130eleq2d 2350 . 2  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } ) )
321sseli 3176 . . 3  |-  ( C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  ->  C  e.  ( X  X.  RR+ )
)
33 simp1 955 . . 3  |-  ( ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) )  ->  C  e.  ( X  X.  RR+ ) )
34 1st2nd2 6159 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
3534eleq1d 2349 . . . . 5  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <->  <. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } ) )
36 fvex 5539 . . . . . 6  |-  ( 1st `  C )  e.  _V
37 fvex 5539 . . . . . 6  |-  ( 2nd `  C )  e.  _V
38 eleq1 2343 . . . . . . . 8  |-  ( x  =  ( 1st `  C
)  ->  ( x  e.  X  <->  ( 1st `  C
)  e.  X ) )
39 eleq1 2343 . . . . . . . 8  |-  ( r  =  ( 2nd `  C
)  ->  ( r  e.  RR+  <->  ( 2nd `  C
)  e.  RR+ )
)
4038, 39bi2anan9 843 . . . . . . 7  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( x  e.  X  /\  r  e.  RR+ )  <->  ( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ ) ) )
41 simpr 447 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  r  =  ( 2nd `  C
) )
4241breq1d 4033 . . . . . . . 8  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
r  <  ( 1  /  A )  <->  ( 2nd `  C )  <  (
1  /  A ) ) )
43 oveq12 5867 . . . . . . . . . 10  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
x ( ball `  D
) r )  =  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )
4443fveq2d 5529 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) ) )
4544sseq1d 3205 . . . . . . . 8  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )
4642, 45anbi12d 691 . . . . . . 7  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) )  <->  ( ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
4740, 46anbi12d 691 . . . . . 6  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( ( ( 1st `  C )  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
4836, 37, 47opelopaba 4281 . . . . 5  |-  ( <.
( 1st `  C
) ,  ( 2nd `  C ) >.  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) }  <->  ( (
( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
4935, 48syl6bb 252 . . . 4  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( ( ( 1st `  C )  e.  X  /\  ( 2nd `  C
)  e.  RR+ )  /\  ( ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
5034eleq1d 2349 . . . . . . 7  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  ( X  X.  RR+ ) 
<-> 
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  ( X  X.  RR+ )
) )
51 opelxp 4719 . . . . . . 7  |-  ( <.
( 1st `  C
) ,  ( 2nd `  C ) >.  e.  ( X  X.  RR+ )  <->  ( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ ) )
5250, 51syl6rbb 253 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  <->  C  e.  ( X  X.  RR+ )
) )
5334fveq2d 5529 . . . . . . . . . 10  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( ball `  D ) `  C )  =  ( ( ball `  D
) `  <. ( 1st `  C ) ,  ( 2nd `  C )
>. ) )
54 df-ov 5861 . . . . . . . . . 10  |-  ( ( 1st `  C ) ( ball `  D
) ( 2nd `  C
) )  =  ( ( ball `  D
) `  <. ( 1st `  C ) ,  ( 2nd `  C )
>. )
5553, 54syl6reqr 2334 . . . . . . . . 9  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) )  =  ( ( ball `  D
) `  C )
)
5655fveq2d 5529 . . . . . . . 8  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  =  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) ) )
5756sseq1d 3205 . . . . . . 7  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) )
5857anbi2d 684 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) )  <-> 
( ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
5952, 58anbi12d 691 . . . . 5  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( ( 2nd `  C )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
60 3anass 938 . . . . 5  |-  ( ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( ( 2nd `  C )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6159, 60syl6bbr 254 . . . 4  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6249, 61bitrd 244 . . 3  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6332, 33, 62pm5.21nii 342 . 2  |-  ( C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )
6431, 63syl6bb 252 1  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    C_ wss 3152   <.cop 3643   class class class wbr 4023   {copab 4076    X. cxp 4687   dom cdm 4689   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   RRcr 8736   1c1 8738    < clt 8867    / cdiv 9423   NNcn 9746   RR+crp 10354   ballcbl 16371   MetOpencmopn 16372   clsccl 16755   CMetcms 18680
This theorem is referenced by:  bcthlem2  18747  bcthlem3  18748  bcthlem4  18749
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rp 10355
  Copyright terms: Public domain W3C validator