MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Unicode version

Theorem bcthlem2 19278
Description: Lemma for bcth 19282. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem.7  |-  ( ph  ->  R  e.  RR+ )
bcthlem.8  |-  ( ph  ->  C  e.  X )
bcthlem.9  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
bcthlem.10  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
bcthlem.11  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
Assertion
Ref Expression
bcthlem2  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
Distinct variable groups:    k, n, r, x, z    C, r, x    g, k, n, r, x, z, D   
g, F, k, n, r, x, z    g, J, k, n, r, x, z    g, M, k, n, r, x, z    ph, k, n, r, x, z    x, R    g, X, k, n, r, x, z
Allowed substitution hints:    ph( g)    C( z, g, k, n)    R( z, g, k, n, r)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
2 oveq1 6088 . . . . . . . 8  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
32fveq2d 5732 . . . . . . 7  |-  ( k  =  n  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( n  +  1
) ) )
4 id 20 . . . . . . . 8  |-  ( k  =  n  ->  k  =  n )
5 fveq2 5728 . . . . . . . 8  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
64, 5oveq12d 6099 . . . . . . 7  |-  ( k  =  n  ->  (
k F ( g `
 k ) )  =  ( n F ( g `  n
) ) )
73, 6eleq12d 2504 . . . . . 6  |-  ( k  =  n  ->  (
( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  <->  ( g `  ( n  +  1 ) )  e.  ( n F ( g `
 n ) ) ) )
87rspccva 3051 . . . . 5  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  /\  n  e.  NN )  ->  ( g `  (
n  +  1 ) )  e.  ( n F ( g `  n ) ) )
91, 8sylan 458 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( g `
 ( n  + 
1 ) )  e.  ( n F ( g `  n ) ) )
10 bcthlem.9 . . . . . 6  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
1110ffvelrnda 5870 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( g `
 n )  e.  ( X  X.  RR+ ) )
12 bcth.2 . . . . . . 7  |-  J  =  ( MetOpen `  D )
13 bcthlem.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( CMet `  X ) )
14 bcthlem.5 . . . . . . 7  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
1512, 13, 14bcthlem1 19277 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  ( g `
 n )  e.  ( X  X.  RR+ ) ) )  -> 
( ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) )  <-> 
( ( g `  ( n  +  1
) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) )
1615expr 599 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  n )  e.  ( X  X.  RR+ )  ->  ( (
g `  ( n  +  1 ) )  e.  ( n F ( g `  n
) )  <->  ( (
g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) ) )
1711, 16mpd 15 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  ( n  +  1 ) )  e.  ( n F ( g `  n
) )  <->  ( (
g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) ) )
189, 17mpbid 202 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) ) )
19 cmetmet 19239 . . . . . . . . . . . . 13  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2013, 19syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( Met `  X ) )
21 metxmet 18364 . . . . . . . . . . . 12  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2312mopntop 18470 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
2422, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
2524adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  J  e.  Top )
26 xp1st 6376 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( g `  (
n  +  1 ) ) )  e.  X
)
27 xp2nd 6377 . . . . . . . . . . . . 13  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR+ )
2827rpxrd 10649 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR* )
2926, 28jca 519 . . . . . . . . . . 11  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( 1st `  ( g `  ( n  +  1
) ) )  e.  X  /\  ( 2nd `  ( g `  (
n  +  1 ) ) )  e.  RR* ) )
30 blssm 18448 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( 1st `  (
g `  ( n  +  1 ) ) )  e.  X  /\  ( 2nd `  ( g `
 ( n  + 
1 ) ) )  e.  RR* )  ->  (
( 1st `  (
g `  ( n  +  1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
31303expb 1154 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( 1st `  ( g `  (
n  +  1 ) ) )  e.  X  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  e.  RR* )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
3222, 29, 31syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  C_  X
)
33 1st2nd2 6386 . . . . . . . . . . . . 13  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( g `  ( n  +  1 ) )  =  <. ( 1st `  ( g `
 ( n  + 
1 ) ) ) ,  ( 2nd `  (
g `  ( n  +  1 ) ) ) >. )
3433fveq2d 5732 . . . . . . . . . . . 12  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
n  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( n  + 
1 ) ) )
>. ) )
35 df-ov 6084 . . . . . . . . . . . 12  |-  ( ( 1st `  ( g `
 ( n  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
n  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( n  + 
1 ) ) )
>. )
3634, 35syl6reqr 2487 . . . . . . . . . . 11  |-  ( ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) )
3736adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 1st `  ( g `  ( n  +  1
) ) ) (
ball `  D )
( 2nd `  (
g `  ( n  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) )
3812mopnuni 18471 . . . . . . . . . . . 12  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
3922, 38syl 16 . . . . . . . . . . 11  |-  ( ph  ->  X  =  U. J
)
4039adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  X  =  U. J )
4132, 37, 403sstr3d 3390 . . . . . . . . 9  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  U. J
)
42 eqid 2436 . . . . . . . . . 10  |-  U. J  =  U. J
4342sscls 17120 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  U. J )  ->  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) ) )
4425, 41, 43syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) ) )
45 difss2 3476 . . . . . . . 8  |-  ( ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
46 sstr2 3355 . . . . . . . 8  |-  ( ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  -> 
( ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) )
4744, 45, 46syl2im 36 . . . . . . 7  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) )
4847a1d 23 . . . . . 6  |-  ( (
ph  /\  ( g `  ( n  +  1 ) )  e.  ( X  X.  RR+ )
)  ->  ( ( 2nd `  ( g `  ( n  +  1
) ) )  < 
( 1  /  n
)  ->  ( (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) ) )
4948ex 424 . . . . 5  |-  ( ph  ->  ( ( g `  ( n  +  1
) )  e.  ( X  X.  RR+ )  ->  ( ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  -> 
( ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) )  -> 
( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) ) ) ) )
50493impd 1167 . . . 4  |-  ( ph  ->  ( ( ( g `
 ( n  + 
1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( n  +  1 ) ) )  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
n  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  n )
)  \  ( M `  n ) ) )  ->  ( ( ball `  D ) `  (
g `  ( n  +  1 ) ) )  C_  ( ( ball `  D ) `  ( g `  n
) ) ) )
5150adantr 452 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( g `  (
n  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  ( n  +  1
) ) )  < 
( 1  /  n
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) ) ) 
C_  ( ( (
ball `  D ) `  ( g `  n
) )  \  ( M `  n )
) )  ->  (
( ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( ball `  D ) `  ( g `  n
) ) ) )
5218, 51mpd 15 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
n  +  1 ) ) )  C_  (
( ball `  D ) `  ( g `  n
) ) )
5352ralrimiva 2789 1  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705    \ cdif 3317    C_ wss 3320   <.cop 3817   U.cuni 4015   class class class wbr 4212   {copab 4265    X. cxp 4876   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1stc1st 6347   2ndc2nd 6348   1c1 8991    + caddc 8993   RR*cxr 9119    < clt 9120    / cdiv 9677   NNcn 10000   RR+crp 10612   * Metcxmt 16686   Metcme 16687   ballcbl 16688   MetOpencmopn 16691   Topctop 16958   Clsdccld 17080   clsccl 17082   CMetcms 19207
This theorem is referenced by:  bcthlem3  19279  bcthlem4  19280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cld 17083  df-cls 17085  df-cmet 19210
  Copyright terms: Public domain W3C validator