MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Unicode version

Theorem bcthlem4 19233
Description: Lemma for bcth 19235. Given any open ball  ( C ( ball `  D
) R ) as starting point (and in particular, a ball in  int ( U. ran  M )), the limit point  x of the centers of the induced sequence of balls  g is outside  U. ran  M. Note that a set  A has empty interior iff every nonempty open set  U contains points outside  A, i.e.  ( U  \  A )  =/=  (/). (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem.7  |-  ( ph  ->  R  e.  RR+ )
bcthlem.8  |-  ( ph  ->  C  e.  X )
bcthlem.9  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
bcthlem.10  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
bcthlem.11  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
Assertion
Ref Expression
bcthlem4  |-  ( ph  ->  ( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
Distinct variable groups:    k, r, x, z    C, r, x   
g, k, r, x, z, D    g, F, k, r, x, z    g, J, k, r, x, z   
g, M, k, r, x, z    ph, k,
r, x, z    x, R    g, X, k, r, x, z
Allowed substitution hints:    ph( g)    C( z, g, k)    R( z, g, k, r)

Proof of Theorem bcthlem4
Dummy variables  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 19192 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 16 . . . . . 6  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 18317 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
53, 4syl 16 . . . . 5  |-  ( ph  ->  D  e.  ( * Met `  X ) )
6 bcthlem.9 . . . . 5  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
7 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
8 bcthlem.5 . . . . . 6  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
9 bcthlem.6 . . . . . 6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
10 bcthlem.7 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
11 bcthlem.8 . . . . . 6  |-  ( ph  ->  C  e.  X )
12 bcthlem.10 . . . . . 6  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
13 bcthlem.11 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 19231 . . . . 5  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
15 elrp 10570 . . . . . . . . 9  |-  ( r  e.  RR+  <->  ( r  e.  RR  /\  0  < 
r ) )
16 nnrecl 10175 . . . . . . . . 9  |-  ( ( r  e.  RR  /\  0  <  r )  ->  E. m  e.  NN  ( 1  /  m
)  <  r )
1715, 16sylbi 188 . . . . . . . 8  |-  ( r  e.  RR+  ->  E. m  e.  NN  ( 1  /  m )  <  r
)
1817adantl 453 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. m  e.  NN  ( 1  /  m )  <  r
)
19 peano2nn 9968 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
2019adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  NN )
21 oveq1 6047 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
2221fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
23 id 20 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  k  =  m )
24 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
2523, 24oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
k F ( g `
 k ) )  =  ( m F ( g `  m
) ) )
2622, 25eleq12d 2472 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  <->  ( g `  ( m  +  1 ) )  e.  ( m F ( g `
 m ) ) ) )
2726rspccva 3011 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  /\  m  e.  NN )  ->  ( g `  (
m  +  1 ) )  e.  ( m F ( g `  m ) ) )
2813, 27sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  e.  ( m F ( g `  m ) ) )
296ffvelrnda 5829 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 m )  e.  ( X  X.  RR+ ) )
307, 1, 8bcthlem1 19230 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN  /\  ( g `
 m )  e.  ( X  X.  RR+ ) ) )  -> 
( ( g `  ( m  +  1
) )  e.  ( m F ( g `
 m ) )  <-> 
( ( g `  ( m  +  1
) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( m  +  1 ) ) )  <  ( 1  /  m )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) )
3130expr 599 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  m )  e.  ( X  X.  RR+ )  ->  ( (
g `  ( m  +  1 ) )  e.  ( m F ( g `  m
) )  <->  ( (
g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) ) )
3229, 31mpd 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  ( m  +  1 ) )  e.  ( m F ( g `  m
) )  <->  ( (
g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) )
3328, 32mpbid 202 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) )
3433simp2d 970 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m ) )
3534adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  ( 2nd `  ( g `  ( m  +  1
) ) )  < 
( 1  /  m
) )
3633simp1d 969 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  e.  ( X  X.  RR+ ) )
37 xp2nd 6336 . . . . . . . . . . . . . 14  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR+ )
3836, 37syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR+ )
3938rpred 10604 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR )
4039adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  ( 2nd `  ( g `  ( m  +  1
) ) )  e.  RR )
41 nnrecre 9992 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
4241adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
1  /  m )  e.  RR )
43 rpre 10574 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
4443ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  r  e.  RR )
45 lttr 9108 . . . . . . . . . . 11  |-  ( ( ( 2nd `  (
g `  ( m  +  1 ) ) )  e.  RR  /\  ( 1  /  m
)  e.  RR  /\  r  e.  RR )  ->  ( ( ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( 1  /  m )  <  r
)  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  r
) )
4640, 42, 44, 45syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( ( 2nd `  (
g `  ( m  +  1 ) ) )  <  ( 1  /  m )  /\  ( 1  /  m
)  <  r )  ->  ( 2nd `  (
g `  ( m  +  1 ) ) )  <  r ) )
4735, 46mpand 657 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( 1  /  m
)  <  r  ->  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  <  r ) )
48 fveq2 5687 . . . . . . . . . . . 12  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
4948fveq2d 5691 . . . . . . . . . . 11  |-  ( n  =  ( m  + 
1 )  ->  ( 2nd `  ( g `  n ) )  =  ( 2nd `  (
g `  ( m  +  1 ) ) ) )
5049breq1d 4182 . . . . . . . . . 10  |-  ( n  =  ( m  + 
1 )  ->  (
( 2nd `  (
g `  n )
)  <  r  <->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  r
) )
5150rspcev 3012 . . . . . . . . 9  |-  ( ( ( m  +  1 )  e.  NN  /\  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  <  r )  ->  E. n  e.  NN  ( 2nd `  ( g `
 n ) )  <  r )
5220, 47, 51ee12an 1369 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( 1  /  m
)  <  r  ->  E. n  e.  NN  ( 2nd `  ( g `  n ) )  < 
r ) )
5352rexlimdva 2790 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. m  e.  NN  (
1  /  m )  <  r  ->  E. n  e.  NN  ( 2nd `  (
g `  n )
)  <  r )
)
5418, 53mpd 15 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. n  e.  NN  ( 2nd `  (
g `  n )
)  <  r )
5554ralrimiva 2749 . . . . 5  |-  ( ph  ->  A. r  e.  RR+  E. n  e.  NN  ( 2nd `  ( g `  n ) )  < 
r )
565, 6, 14, 55caubl 19213 . . . 4  |-  ( ph  ->  ( 1st  o.  g
)  e.  ( Cau `  D ) )
577cmetcau 19195 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( 1st  o.  g )  e.  ( Cau `  D
) )  ->  ( 1st  o.  g )  e. 
dom  ( ~~> t `  J ) )
581, 56, 57syl2anc 643 . . 3  |-  ( ph  ->  ( 1st  o.  g
)  e.  dom  ( ~~> t `  J )
)
59 fo1st 6325 . . . . . 6  |-  1st : _V -onto-> _V
60 fofun 5613 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
6159, 60ax-mp 8 . . . . 5  |-  Fun  1st
62 vex 2919 . . . . 5  |-  g  e. 
_V
63 cofunexg 5918 . . . . 5  |-  ( ( Fun  1st  /\  g  e.  _V )  ->  ( 1st  o.  g )  e. 
_V )
6461, 62, 63mp2an 654 . . . 4  |-  ( 1st 
o.  g )  e. 
_V
6564eldm 5026 . . 3  |-  ( ( 1st  o.  g )  e.  dom  ( ~~> t `  J )  <->  E. x
( 1st  o.  g
) ( ~~> t `  J ) x )
6658, 65sylib 189 . 2  |-  ( ph  ->  E. x ( 1st 
o.  g ) ( ~~> t `  J ) x )
67 1nn 9967 . . . . . 6  |-  1  e.  NN
687, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 19232 . . . . . 6  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  1  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  1
) ) )
6967, 68mp3an3 1268 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( ( ball `  D
) `  ( g `  1 ) ) )
7012fveq2d 5691 . . . . . . 7  |-  ( ph  ->  ( ( ball `  D
) `  ( g `  1 ) )  =  ( ( ball `  D ) `  <. C ,  R >. )
)
71 df-ov 6043 . . . . . . 7  |-  ( C ( ball `  D
) R )  =  ( ( ball `  D
) `  <. C ,  R >. )
7270, 71syl6eqr 2454 . . . . . 6  |-  ( ph  ->  ( ( ball `  D
) `  ( g `  1 ) )  =  ( C (
ball `  D ) R ) )
7372adantr 452 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  ( ( ball `  D ) `  (
g `  1 )
)  =  ( C ( ball `  D
) R ) )
7469, 73eleqtrd 2480 . . . 4  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( C ( ball `  D
) R ) )
757mopntop 18423 . . . . . . . . . . . . . 14  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
765, 75syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
7776adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  J  e. 
Top )
785adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  D  e.  ( * Met `  X
) )
79 xp1st 6335 . . . . . . . . . . . . . . 15  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( g `  (
m  +  1 ) ) )  e.  X
)
8036, 79syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( g `  (
m  +  1 ) ) )  e.  X
)
8138rpxrd 10605 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR* )
82 blssm 18401 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( 1st `  (
g `  ( m  +  1 ) ) )  e.  X  /\  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  e.  RR* )  ->  (
( 1st `  (
g `  ( m  +  1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  C_  X
)
8378, 80, 81, 82syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  C_  X
)
84 1st2nd2 6345 . . . . . . . . . . . . . . . 16  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( g `  ( m  +  1 ) )  =  <. ( 1st `  ( g `
 ( m  + 
1 ) ) ) ,  ( 2nd `  (
g `  ( m  +  1 ) ) ) >. )
8536, 84syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  = 
<. ( 1st `  (
g `  ( m  +  1 ) ) ) ,  ( 2nd `  ( g `  (
m  +  1 ) ) ) >. )
8685fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
m  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( m  + 
1 ) ) )
>. ) )
87 df-ov 6043 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
m  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( m  + 
1 ) ) )
>. )
8886, 87syl6reqr 2455 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) ) )
897mopnuni 18424 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
905, 89syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =  U. J
)
9190adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  X  = 
U. J )
9283, 88, 913sstr3d 3350 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  U. J
)
93 eqid 2404 . . . . . . . . . . . . 13  |-  U. J  =  U. J
9493sscls 17075 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) )  C_  U. J )  ->  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) ) )
9577, 92, 94syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) ) )
9633simp3d 971 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( cls `  J ) `
 ( ( ball `  D ) `  (
g `  ( m  +  1 ) ) ) )  C_  (
( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
9795, 96sstrd 3318 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
98973adant2 976 . . . . . . . . 9  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) )
997, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 19232 . . . . . . . . . 10  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  ( m  +  1
)  e.  NN )  ->  x  e.  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) ) )
10019, 99syl3an3 1219 . . . . . . . . 9  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) ) )
10198, 100sseldd 3309 . . . . . . . 8  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  x  e.  ( ( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
102101eldifbd 3293 . . . . . . 7  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  -.  x  e.  ( M `  m ) )
1031023expa 1153 . . . . . 6  |-  ( ( ( ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  /\  m  e.  NN )  ->  -.  x  e.  ( M `  m ) )
104103ralrimiva 2749 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  A. m  e.  NN  -.  x  e.  ( M `  m )
)
105 eluni2 3979 . . . . . . . . 9  |-  ( x  e.  U. ran  M  <->  E. y  e.  ran  M  x  e.  y )
106 ffn 5550 . . . . . . . . . . 11  |-  ( M : NN --> ( Clsd `  J )  ->  M  Fn  NN )
1079, 106syl 16 . . . . . . . . . 10  |-  ( ph  ->  M  Fn  NN )
108 eleq2 2465 . . . . . . . . . . 11  |-  ( y  =  ( M `  m )  ->  (
x  e.  y  <->  x  e.  ( M `  m ) ) )
109108rexrn 5831 . . . . . . . . . 10  |-  ( M  Fn  NN  ->  ( E. y  e.  ran  M  x  e.  y  <->  E. m  e.  NN  x  e.  ( M `  m ) ) )
110107, 109syl 16 . . . . . . . . 9  |-  ( ph  ->  ( E. y  e. 
ran  M  x  e.  y 
<->  E. m  e.  NN  x  e.  ( M `  m ) ) )
111105, 110syl5bb 249 . . . . . . . 8  |-  ( ph  ->  ( x  e.  U. ran  M  <->  E. m  e.  NN  x  e.  ( M `  m ) ) )
112111notbid 286 . . . . . . 7  |-  ( ph  ->  ( -.  x  e. 
U. ran  M  <->  -.  E. m  e.  NN  x  e.  ( M `  m ) ) )
113 ralnex 2676 . . . . . . 7  |-  ( A. m  e.  NN  -.  x  e.  ( M `  m )  <->  -.  E. m  e.  NN  x  e.  ( M `  m ) )
114112, 113syl6bbr 255 . . . . . 6  |-  ( ph  ->  ( -.  x  e. 
U. ran  M  <->  A. m  e.  NN  -.  x  e.  ( M `  m
) ) )
115114biimpar 472 . . . . 5  |-  ( (
ph  /\  A. m  e.  NN  -.  x  e.  ( M `  m
) )  ->  -.  x  e.  U. ran  M
)
116104, 115syldan 457 . . . 4  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  -.  x  e.  U.
ran  M )
11774, 116eldifd 3291 . . 3  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( ( C ( ball `  D ) R ) 
\  U. ran  M ) )
118 ne0i 3594 . . 3  |-  ( x  e.  ( ( C ( ball `  D
) R )  \  U. ran  M )  -> 
( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
119117, 118syl 16 . 2  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  ( ( C ( ball `  D
) R )  \  U. ran  M )  =/=  (/) )
12066, 119exlimddv 1645 1  |-  ( ph  ->  ( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    C_ wss 3280   (/)c0 3588   <.cop 3777   U.cuni 3975   class class class wbr 4172   {copab 4225    X. cxp 4835   dom cdm 4837   ran crn 4838    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949   RR*cxr 9075    < clt 9076    / cdiv 9633   NNcn 9956   RR+crp 10568   * Metcxmt 16641   Metcme 16642   ballcbl 16643   MetOpencmopn 16646   Topctop 16913   Clsdccld 17035   clsccl 17037   ~~> tclm 17244   Caucca 19159   CMetcms 19160
This theorem is referenced by:  bcthlem5  19234
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ico 10878  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-top 16918  df-bases 16920  df-topon 16921  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lm 17247  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-cfil 19161  df-cau 19162  df-cmet 19163
  Copyright terms: Public domain W3C validator