MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem5 Unicode version

Theorem bcthlem5 18750
Description: Lemma for bcth 18751. The proof makes essential use of the Axiom of Dependent Choice axdc4uz 11045, which in the form used here accepts a "selection" function  F from each element of  K to a nonempty subset of  K, and the result function  g maps  g (
n  +  1 ) to an element of  F ( n ,  g ( n ) ). The trick here is thus in the choice of  F and  K: we let  K be the set of all tagged nonempty open sets (tagged here meaning that we have a point and an open set, in an ordered pair), and  F ( k ,  <. x ,  z >. ) gives the set of all balls of size less than  1  /  k, tagged by their centers, whose closures fit within the given open set  z and miss  M ( k ).

Since  M ( k ) is closed,  z  \  M ( k ) is open and also nonempty, since  z is nonempty and  M ( k ) has empty interior. Then there is some ball contained in it, and hence our function  F is valid (it never maps to the empty set). Now starting at a point in the interior of  U. ran  M, DC gives us the function  g all whose elements are constrained by  F acting on the previous value. (This is all proven in this lemma.) Now  g is a sequence of tagged open balls, forming an inclusion chain (see bcthlem2 18747) and whose sizes tend to zero, since they are bounded above by  1  /  k. Thus the centers of these balls form a Cauchy sequence, and converge to a point  x (see bcthlem4 18749). Since the inclusion chain also ensures the closure of each ball is in the previous ball, the point  x must be in all these balls (see bcthlem3 18748) and hence misses each  M ( k ), contradicting the fact that  x is in the interior of  U. ran  M (which was the starting point). (Contributed by Mario Carneiro, 6-Jan-2014.)

Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem5.7  |-  ( ph  ->  A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
Assertion
Ref Expression
bcthlem5  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  =  (/) )
Distinct variable groups:    k, r, x, z, D    k, F, r, x, z    k, J, r, x, z    k, M, r, x, z    ph, k,
r, x, z    k, X, r, x, z

Proof of Theorem bcthlem5
Dummy variables  n  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . . . 6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 18712 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
3 metxmet 17899 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
41, 2, 33syl 18 . . . . 5  |-  ( ph  ->  D  e.  ( * Met `  X ) )
5 bcth.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntop 17986 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
74, 6syl 15 . . . . . 6  |-  ( ph  ->  J  e.  Top )
8 bcthlem.6 . . . . . . . . 9  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
9 frn 5395 . . . . . . . . 9  |-  ( M : NN --> ( Clsd `  J )  ->  ran  M 
C_  ( Clsd `  J
) )
108, 9syl 15 . . . . . . . 8  |-  ( ph  ->  ran  M  C_  ( Clsd `  J ) )
11 eqid 2283 . . . . . . . . 9  |-  U. J  =  U. J
1211cldss2 16767 . . . . . . . 8  |-  ( Clsd `  J )  C_  ~P U. J
1310, 12syl6ss 3191 . . . . . . 7  |-  ( ph  ->  ran  M  C_  ~P U. J )
14 sspwuni 3987 . . . . . . 7  |-  ( ran 
M  C_  ~P U. J  <->  U.
ran  M  C_  U. J
)
1513, 14sylib 188 . . . . . 6  |-  ( ph  ->  U. ran  M  C_  U. J )
1611ntropn 16786 . . . . . 6  |-  ( ( J  e.  Top  /\  U.
ran  M  C_  U. J
)  ->  ( ( int `  J ) `  U. ran  M )  e.  J )
177, 15, 16syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  e.  J )
184, 17jca 518 . . . 4  |-  ( ph  ->  ( D  e.  ( * Met `  X
)  /\  ( ( int `  J ) `  U. ran  M )  e.  J ) )
195mopni2 18039 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( int `  J ) `  U. ran  M )  e.  J  /\  n  e.  (
( int `  J
) `  U. ran  M
) )  ->  E. m  e.  RR+  ( n (
ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
) )
20193expa 1151 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( ( int `  J ) `  U. ran  M )  e.  J )  /\  n  e.  ( ( int `  J
) `  U. ran  M
) )  ->  E. m  e.  RR+  ( n (
ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
) )
2118, 20sylan 457 . . 3  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
) )  ->  E. m  e.  RR+  ( n (
ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
) )
225mopnuni 17987 . . . . . . . . . . . 12  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
234, 22syl 15 . . . . . . . . . . 11  |-  ( ph  ->  X  =  U. J
)
2411topopn 16652 . . . . . . . . . . . 12  |-  ( J  e.  Top  ->  U. J  e.  J )
257, 24syl 15 . . . . . . . . . . 11  |-  ( ph  ->  U. J  e.  J
)
2623, 25eqeltrd 2357 . . . . . . . . . 10  |-  ( ph  ->  X  e.  J )
27 reex 8828 . . . . . . . . . . 11  |-  RR  e.  _V
28 rpssre 10364 . . . . . . . . . . 11  |-  RR+  C_  RR
2927, 28ssexi 4159 . . . . . . . . . 10  |-  RR+  e.  _V
30 xpexg 4800 . . . . . . . . . 10  |-  ( ( X  e.  J  /\  RR+ 
e.  _V )  ->  ( X  X.  RR+ )  e.  _V )
3126, 29, 30sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( X  X.  RR+ )  e.  _V )
32313ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( X  X.  RR+ )  e.  _V )
3311ntrss3 16797 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  U.
ran  M  C_  U. J
)  ->  ( ( int `  J ) `  U. ran  M )  C_  U. J )
347, 15, 33syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  C_  U. J )
3534, 23sseqtr4d 3215 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  C_  X )
36353ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( ( int `  J ) `  U. ran  M )  C_  X )
37 simp2 956 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  n  e.  ( ( int `  J
) `  U. ran  M
) )
3836, 37sseldd 3181 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  n  e.  X )
39 simp3 957 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  m  e.  RR+ )
40 opelxpi 4721 . . . . . . . . 9  |-  ( ( n  e.  X  /\  m  e.  RR+ )  ->  <. n ,  m >.  e.  ( X  X.  RR+ ) )
4138, 39, 40syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  <. n ,  m >.  e.  ( X  X.  RR+ ) )
42 opabssxp 4762 . . . . . . . . . . . . 13  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } 
C_  ( X  X.  RR+ )
43 elpw2g 4174 . . . . . . . . . . . . . . 15  |-  ( ( X  X.  RR+ )  e.  _V  ->  ( { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) }  e.  ~P ( X  X.  RR+ )  <->  {
<. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) }  C_  ( X  X.  RR+ ) ) )
4431, 43syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ~P ( X  X.  RR+ )  <->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } 
C_  ( X  X.  RR+ ) ) )
4544adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ~P ( X  X.  RR+ )  <->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } 
C_  ( X  X.  RR+ ) ) )
4642, 45mpbiri 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ~P ( X  X.  RR+ ) )
47 bcthlem5.7 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
48 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  -> 
k  e.  NN )
49 rsp 2603 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/)  ->  ( k  e.  NN  ->  ( ( int `  J ) `  ( M `  k ) )  =  (/) ) )
5049imp 418 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/)  /\  k  e.  NN )  ->  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
5147, 48, 50syl2an 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( int `  J
) `  ( M `  k ) )  =  (/) )
52 ssdif0 3513 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ball `  D
) `  z )  C_  ( M `  k
)  <->  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  =  (/) )
53 1st2nd2 6159 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( X  X.  RR+ )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
5453ad2antll 709 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
5554fveq2d 5529 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  =  ( ( ball `  D ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
56 df-ov 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  z ) ( ball `  D
) ( 2nd `  z
) )  =  ( ( ball `  D
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
5755, 56syl6eqr 2333 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  =  ( ( 1st `  z ) ( ball `  D ) ( 2nd `  z ) ) )
584adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  D  e.  ( * Met `  X ) )
59 xp1st 6149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( X  X.  RR+ )  ->  ( 1st `  z )  e.  X
)
6059ad2antll 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( 1st `  z
)  e.  X )
61 xp2nd 6150 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( X  X.  RR+ )  ->  ( 2nd `  z )  e.  RR+ )
6261ad2antll 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( 2nd `  z
)  e.  RR+ )
63 bln0 17966 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( * Met `  X )  /\  ( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  RR+ )  ->  (
( 1st `  z
) ( ball `  D
) ( 2nd `  z
) )  =/=  (/) )
6458, 60, 62, 63syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( 1st `  z
) ( ball `  D
) ( 2nd `  z
) )  =/=  (/) )
6557, 64eqnetrd 2464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  =/=  (/) )
667adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  J  e.  Top )
67 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M : NN --> ( Clsd `  J )  /\  k  e.  NN )  ->  ( M `  k )  e.  ( Clsd `  J
) )
688, 48, 67syl2an 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( M `  k
)  e.  ( Clsd `  J ) )
6911cldss 16766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M `  k )  e.  ( Clsd `  J
)  ->  ( M `  k )  C_  U. J
)
7068, 69syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( M `  k
)  C_  U. J )
7162rpxrd 10391 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( 2nd `  z
)  e.  RR* )
725blopn 18046 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  ( * Met `  X )  /\  ( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  RR* )  ->  (
( 1st `  z
) ( ball `  D
) ( 2nd `  z
) )  e.  J
)
7358, 60, 71, 72syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( 1st `  z
) ( ball `  D
) ( 2nd `  z
) )  e.  J
)
7457, 73eqeltrd 2357 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  e.  J )
7511ssntr 16795 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  ( M `  k
)  C_  U. J )  /\  ( ( (
ball `  D ) `  z )  e.  J  /\  ( ( ball `  D
) `  z )  C_  ( M `  k
) ) )  -> 
( ( ball `  D
) `  z )  C_  ( ( int `  J
) `  ( M `  k ) ) )
7675expr 598 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  ( M `  k
)  C_  U. J )  /\  ( ( ball `  D ) `  z
)  e.  J )  ->  ( ( (
ball `  D ) `  z )  C_  ( M `  k )  ->  ( ( ball `  D
) `  z )  C_  ( ( int `  J
) `  ( M `  k ) ) ) )
7766, 70, 74, 76syl21anc 1181 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( ball `  D ) `  z
)  C_  ( M `  k )  ->  (
( ball `  D ) `  z )  C_  (
( int `  J
) `  ( M `  k ) ) ) )
78 ssn0 3487 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ball `  D
) `  z )  C_  ( ( int `  J
) `  ( M `  k ) )  /\  ( ( ball `  D
) `  z )  =/=  (/) )  ->  (
( int `  J
) `  ( M `  k ) )  =/=  (/) )
7978expcom 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ball `  D
) `  z )  =/=  (/)  ->  ( (
( ball `  D ) `  z )  C_  (
( int `  J
) `  ( M `  k ) )  -> 
( ( int `  J
) `  ( M `  k ) )  =/=  (/) ) )
8065, 77, 79sylsyld 52 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( ball `  D ) `  z
)  C_  ( M `  k )  ->  (
( int `  J
) `  ( M `  k ) )  =/=  (/) ) )
8152, 80syl5bir 209 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  =  (/)  ->  (
( int `  J
) `  ( M `  k ) )  =/=  (/) ) )
8281necon2d 2496 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( int `  J ) `  ( M `  k )
)  =  (/)  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =/=  (/) ) )
8351, 82mpd 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  =/=  (/) )
84 n0 3464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ball `  D
) `  z )  \  ( M `  k ) )  =/=  (/) 
<->  E. x  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )
8543ad2ant1 976 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  D  e.  ( * Met `  X
) )
8611difopn 16771 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ball `  D
) `  z )  e.  J  /\  ( M `  k )  e.  ( Clsd `  J
) )  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  e.  J )
8774, 68, 86syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  e.  J )
88873adant3 975 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  e.  J )
89 simp3 957 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  x  e.  ( ( ( ball `  D
) `  z )  \  ( M `  k ) ) )
90 simp2l 981 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  k  e.  NN )
91 nnrp 10363 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  RR+ )
9291rpreccld 10400 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
9390, 92syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ( 1  / 
k )  e.  RR+ )
945mopni3 18040 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( (
( ball `  D ) `  z )  \  ( M `  k )
)  e.  J  /\  x  e.  ( (
( ball `  D ) `  z )  \  ( M `  k )
) )  /\  (
1  /  k )  e.  RR+ )  ->  E. n  e.  RR+  ( n  < 
( 1  /  k
)  /\  ( x
( ball `  D )
n )  C_  (
( ( ball `  D
) `  z )  \  ( M `  k ) ) ) )
9585, 88, 89, 93, 94syl31anc 1185 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  E. n  e.  RR+  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )
96 simp1 955 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ph )
97 difss 3303 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ball `  D
) `  z )  \  ( M `  k ) )  C_  ( ( ball `  D
) `  z )
98 elssuni 3855 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ball `  D
) `  z )  e.  J  ->  ( (
ball `  D ) `  z )  C_  U. J
)
9974, 98syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  C_ 
U. J )
10023adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  X  =  U. J )
10199, 100sseqtr4d 3215 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ball `  D
) `  z )  C_  X )
10297, 101syl5ss 3190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  C_  X )
103102sseld 3179 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( x  e.  ( ( ( ball `  D
) `  z )  \  ( M `  k ) )  ->  x  e.  X )
)
1041033impia 1148 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  x  e.  X
)
105 simp2 956 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )
106 rphalfcl 10378 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  RR+  ->  ( n  /  2 )  e.  RR+ )
107 rphalflt 10380 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  RR+  ->  ( n  /  2 )  < 
n )
108 breq1 4026 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( r  =  ( n  / 
2 )  ->  (
r  <  n  <->  ( n  /  2 )  < 
n ) )
109108rspcev 2884 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  /  2
)  e.  RR+  /\  (
n  /  2 )  <  n )  ->  E. r  e.  RR+  r  <  n )
110106, 107, 109syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  RR+  ->  E. r  e.  RR+  r  <  n
)
111110ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  /\  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )  ->  E. r  e.  RR+  r  <  n )
112 df-rex 2549 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( E. r  e.  RR+  r  <  n  <->  E. r ( r  e.  RR+  /\  r  <  n ) )
113 simpr3 963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  r  e.  RR+ )
114113rpred 10390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  r  e.  RR )
115 simpr1 961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  n  e.  RR+ )
116115rpred 10390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  n  e.  RR )
117 simplrl 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  k  e.  NN )
118117nnrecred 9791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( 1  /  k )  e.  RR )
119 simpr2 962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  r  <  n )
120 lttr 8899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( r  e.  RR  /\  n  e.  RR  /\  (
1  /  k )  e.  RR )  -> 
( ( r  < 
n  /\  n  <  ( 1  /  k ) )  ->  r  <  ( 1  /  k ) ) )
121120expdimp 426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( r  e.  RR  /\  n  e.  RR  /\  ( 1  /  k
)  e.  RR )  /\  r  <  n
)  ->  ( n  <  ( 1  /  k
)  ->  r  <  ( 1  /  k ) ) )
122114, 116, 118, 119, 121syl31anc 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( n  <  ( 1  /  k
)  ->  r  <  ( 1  /  k ) ) )
1234anim1i 551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  x  e.  X )  ->  ( D  e.  ( * Met `  X )  /\  x  e.  X )
)
124123adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ph  /\  x  e.  X )  /\  (
k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  ( D  e.  ( * Met `  X
)  /\  x  e.  X ) )
125 rpxr 10361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( r  e.  RR+  ->  r  e. 
RR* )
126 rpxr 10361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( n  e.  RR+  ->  n  e. 
RR* )
127 id 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( r  <  n  ->  r  <  n )
128125, 126, 1273anim123i 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( r  e.  RR+  /\  n  e.  RR+  /\  r  < 
n )  ->  (
r  e.  RR*  /\  n  e.  RR*  /\  r  < 
n ) )
1291283coml 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )  ->  ( r  e.  RR*  /\  n  e.  RR*  /\  r  < 
n ) )
1305blsscls 18053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR*  /\  n  e.  RR*  /\  r  < 
n ) )  -> 
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( x ( ball `  D ) n ) )
131124, 129, 130syl2an 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( x
( ball `  D )
n ) )
132 sstr2 3186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( x ( ball `  D ) n )  ->  ( ( x ( ball `  D
) n )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  -> 
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )
133131, 132syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( (
x ( ball `  D
) n )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  -> 
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )
134122, 133anim12d 546 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( (
n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  ->  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) )
135 simpllr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  x  e.  X )
136135, 113jca 518 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( x  e.  X  /\  r  e.  RR+ ) )
137134, 136jctild 527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  ( n  e.  RR+  /\  r  <  n  /\  r  e.  RR+ )
)  ->  ( (
n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  ->  (
( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) )
1381373exp2 1169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  x  e.  X )  /\  (
k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  ( n  e.  RR+  ->  ( r  < 
n  ->  ( r  e.  RR+  ->  ( (
n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  ->  (
( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) ) ) ) )
139138com35 84 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  x  e.  X )  /\  (
k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  ( n  e.  RR+  ->  ( ( n  <  ( 1  / 
k )  /\  (
x ( ball `  D
) n )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ( r  e.  RR+  ->  ( r  < 
n  ->  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) ) ) ) )
140139imp5d 582 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  /\  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )  -> 
( ( r  e.  RR+  /\  r  <  n
)  ->  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) )
141140eximdv 1608 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  /\  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )  -> 
( E. r ( r  e.  RR+  /\  r  <  n )  ->  E. r
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
142112, 141syl5bi 208 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  /\  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )  -> 
( E. r  e.  RR+  r  <  n  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
143111, 142mpd 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  /\  ( n  <  ( 1  /  k )  /\  ( x ( ball `  D ) n ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) )
144143ex 423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  X )  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  /\  n  e.  RR+ )  ->  ( ( n  <  ( 1  / 
k )  /\  (
x ( ball `  D
) n )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) )
145144rexlimdva 2667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  (
k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  ( E. n  e.  RR+  ( n  < 
( 1  /  k
)  /\  ( x
( ball `  D )
n )  C_  (
( ( ball `  D
) `  z )  \  ( M `  k ) ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) )
14696, 104, 105, 145syl21anc 1181 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  ( E. n  e.  RR+  ( n  < 
( 1  /  k
)  /\  ( x
( ball `  D )
n )  C_  (
( ( ball `  D
) `  z )  \  ( M `  k ) ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) ) )
14795, 146mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) )  /\  x  e.  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) )
1481473expia 1153 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( x  e.  ( ( ( ball `  D
) `  z )  \  ( M `  k ) )  ->  E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
149148eximdv 1608 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( E. x  x  e.  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  ->  E. x E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
15084, 149syl5bi 208 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  -> 
( ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  =/=  (/)  ->  E. x E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
15183, 150mpd 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  E. x E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) )
152 opabn0 4295 . . . . . . . . . . . . 13  |-  ( {
<. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) }  =/=  (/)  <->  E. x E. r ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) )
153151, 152sylibr 203 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =/=  (/) )
154 eldifsn 3749 . . . . . . . . . . . 12  |-  ( {
<. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) }  e.  ( ~P ( X  X.  RR+ )  \  { (/) } )  <->  ( { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ~P ( X  X.  RR+ )  /\  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) }  =/=  (/) ) )
15546, 153, 154sylanbrc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  z  e.  ( X  X.  RR+ ) ) )  ->  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ( ~P ( X  X.  RR+ )  \  { (/)
} ) )
156155ralrimivva 2635 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  NN  A. z  e.  ( X  X.  RR+ ) { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ( ~P ( X  X.  RR+ )  \  { (/)
} ) )
157 bcthlem.5 . . . . . . . . . . 11  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
158157fmpt2 6191 . . . . . . . . . 10  |-  ( A. k  e.  NN  A. z  e.  ( X  X.  RR+ ) { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  e.  ( ~P ( X  X.  RR+ )  \  { (/)
} )  <->  F :
( NN  X.  ( X  X.  RR+ ) ) --> ( ~P ( X  X.  RR+ )  \  { (/) } ) )
159156, 158sylib 188 . . . . . . . . 9  |-  ( ph  ->  F : ( NN 
X.  ( X  X.  RR+ ) ) --> ( ~P ( X  X.  RR+ )  \  { (/) } ) )
1601593ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  F :
( NN  X.  ( X  X.  RR+ ) ) --> ( ~P ( X  X.  RR+ )  \  { (/) } ) )
161 1z 10053 . . . . . . . . 9  |-  1  e.  ZZ
162 nnuz 10263 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
163161, 162axdc4uz 11045 . . . . . . . 8  |-  ( ( ( X  X.  RR+ )  e.  _V  /\  <. n ,  m >.  e.  ( X  X.  RR+ )  /\  F : ( NN 
X.  ( X  X.  RR+ ) ) --> ( ~P ( X  X.  RR+ )  \  { (/) } ) )  ->  E. g
( g : NN --> ( X  X.  RR+ )  /\  ( g `  1
)  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )
16432, 41, 160, 163syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  E. g
( g : NN --> ( X  X.  RR+ )  /\  ( g `  1
)  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )
165 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  ph )
166165, 1syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  D  e.  ( CMet `  X
) )
167165, 8syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  M : NN --> ( Clsd `  J
) )
168 simpl3 960 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  m  e.  RR+ )
16938adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  n  e.  X )
170 simpr1 961 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  g : NN --> ( X  X.  RR+ ) )
171 simpr2 962 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  (
g `  1 )  =  <. n ,  m >. )
172 simpr3 963 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) )
173 oveq1 5865 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
174173fveq2d 5529 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
g `  ( n  +  1 ) )  =  ( g `  ( k  +  1 ) ) )
175 id 19 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  n  =  k )
176 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
g `  n )  =  ( g `  k ) )
177175, 176oveq12d 5876 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n F ( g `
 n ) )  =  ( k F ( g `  k
) ) )
178174, 177eleq12d 2351 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( g `  (
n  +  1 ) )  e.  ( n F ( g `  n ) )  <->  ( g `  ( k  +  1 ) )  e.  ( k F ( g `
 k ) ) ) )
179178cbvralv 2764 . . . . . . . . . . 11  |-  ( A. n  e.  NN  (
g `  ( n  +  1 ) )  e.  ( n F ( g `  n
) )  <->  A. k  e.  NN  ( g `  ( k  +  1 ) )  e.  ( k F ( g `
 k ) ) )
180172, 179sylib 188 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  A. k  e.  NN  ( g `  ( k  +  1 ) )  e.  ( k F ( g `
 k ) ) )
1815, 166, 157, 167, 168, 169, 170, 171, 180bcthlem4 18749 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  /\  ( g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) ) )  ->  (
( n ( ball `  D ) m ) 
\  U. ran  M )  =/=  (/) )
182181ex 423 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( (
g : NN --> ( X  X.  RR+ )  /\  (
g `  1 )  =  <. n ,  m >.  /\  A. n  e.  NN  ( g `  ( n  +  1
) )  e.  ( n F ( g `
 n ) ) )  ->  ( (
n ( ball `  D
) m )  \  U. ran  M )  =/=  (/) ) )
183182exlimdv 1664 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( E. g ( g : NN --> ( X  X.  RR+ )  /\  ( g `
 1 )  = 
<. n ,  m >.  /\ 
A. n  e.  NN  ( g `  (
n  +  1 ) )  e.  ( n F ( g `  n ) ) )  ->  ( ( n ( ball `  D
) m )  \  U. ran  M )  =/=  (/) ) )
184164, 183mpd 14 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( (
n ( ball `  D
) m )  \  U. ran  M )  =/=  (/) )
18511ntrss2 16794 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  U.
ran  M  C_  U. J
)  ->  ( ( int `  J ) `  U. ran  M )  C_  U.
ran  M )
1867, 15, 185syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  C_  U. ran  M
)
187 sstr2 3186 . . . . . . . . . 10  |-  ( ( n ( ball `  D
) m )  C_  ( ( int `  J
) `  U. ran  M
)  ->  ( (
( int `  J
) `  U. ran  M
)  C_  U. ran  M  ->  ( n ( ball `  D ) m ) 
C_  U. ran  M ) )
188186, 187syl5com 26 . . . . . . . . 9  |-  ( ph  ->  ( ( n (
ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
)  ->  ( n
( ball `  D )
m )  C_  U. ran  M ) )
189 ssdif0 3513 . . . . . . . . 9  |-  ( ( n ( ball `  D
) m )  C_  U.
ran  M  <->  ( ( n ( ball `  D
) m )  \  U. ran  M )  =  (/) )
190188, 189syl6ib 217 . . . . . . . 8  |-  ( ph  ->  ( ( n (
ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
)  ->  ( (
n ( ball `  D
) m )  \  U. ran  M )  =  (/) ) )
191190necon3ad 2482 . . . . . . 7  |-  ( ph  ->  ( ( ( n ( ball `  D
) m )  \  U. ran  M )  =/=  (/)  ->  -.  ( n
( ball `  D )
m )  C_  (
( int `  J
) `  U. ran  M
) ) )
1921913ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  ( (
( n ( ball `  D ) m ) 
\  U. ran  M )  =/=  (/)  ->  -.  (
n ( ball `  D
) m )  C_  ( ( int `  J
) `  U. ran  M
) ) )
193184, 192mpd 14 . . . . 5  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
)  /\  m  e.  RR+ )  ->  -.  (
n ( ball `  D
) m )  C_  ( ( int `  J
) `  U. ran  M
) )
1941933expa 1151 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
) )  /\  m  e.  RR+ )  ->  -.  ( n ( ball `  D ) m ) 
C_  ( ( int `  J ) `  U. ran  M ) )
195194nrexdv 2646 . . 3  |-  ( (
ph  /\  n  e.  ( ( int `  J
) `  U. ran  M
) )  ->  -.  E. m  e.  RR+  (
n ( ball `  D
) m )  C_  ( ( int `  J
) `  U. ran  M
) )
19621, 195pm2.65da 559 . 2  |-  ( ph  ->  -.  n  e.  ( ( int `  J
) `  U. ran  M
) )
197196eq0rdv 3489 1  |-  ( ph  ->  ( ( int `  J
) `  U. ran  M
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023   {copab 4076    X. cxp 4687   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   RRcr 8736   1c1 8738    + caddc 8740   RR*cxr 8866    < clt 8867    / cdiv 9423   NNcn 9746   2c2 9795   RR+crp 10354   * Metcxmt 16369   Metcme 16370   ballcbl 16371   MetOpencmopn 16372   Topctop 16631   Clsdccld 16753   intcnt 16754   clsccl 16755   CMetcms 18680
This theorem is referenced by:  bcth  18751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-dc 8072  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lm 16959  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-cfil 18681  df-cau 18682  df-cmet 18683
  Copyright terms: Public domain W3C validator