MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval4 Unicode version

Theorem bcval4 11320
Description: Value of the binomial coefficient,  N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10799 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
2 0re 8838 . . . . . . . . . 10  |-  0  e.  RR
3 elfzelz 10798 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
43zred 10117 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
5 lenlt 8901 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  -.  K  <  0 ) )
62, 4, 5sylancr 644 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  (
0  <_  K  <->  -.  K  <  0 ) )
71, 6mpbid 201 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  -.  K  <  0 )
87adantl 452 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  K  <  0 )
9 elfzle2 10800 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
109adantl 452 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  K  <_  N
)
11 nn0re 9974 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
12 lenlt 8901 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <_  N  <->  -.  N  <  K ) )
134, 11, 12syl2anr 464 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1410, 13mpbid 201 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  N  <  K )
15 ioran 476 . . . . . . 7  |-  ( -.  ( K  <  0  \/  N  <  K )  <-> 
( -.  K  <  0  /\  -.  N  <  K ) )
168, 14, 15sylanbrc 645 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  ( K  <  0  \/  N  < 
K ) )
1716ex 423 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  <  K ) ) )
1817adantr 451 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  < 
K ) ) )
1918con2d 107 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  <  0  \/  N  < 
K )  ->  -.  K  e.  ( 0 ... N ) ) )
20193impia 1148 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  -.  K  e.  (
0 ... N ) )
21 bcval3 11319 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
2220, 21syld3an3 1227 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RRcr 8736   0cc0 8737    < clt 8867    <_ cle 8868   NN0cn0 9965   ZZcz 10024   ...cfz 10782    _C cbc 11315
This theorem is referenced by:  bcn1  11325  bcpasc  11333  hashf1  11395  0hashbc  13054  ram0  13069  basellem2  20319  bcmono  20516
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-xr 8871  df-le 8873  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-bc 11316
  Copyright terms: Public domain W3C validator