MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Unicode version

Theorem bernneq3 11499
Description: A corollary of bernneq 11497. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 10222 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
21adantl 453 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  RR )
3 peano2re 9231 . . 3  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
42, 3syl 16 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  RR )
5 eluzelre 10489 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
6 reexpcl 11390 . . 3  |-  ( ( P  e.  RR  /\  N  e.  NN0 )  -> 
( P ^ N
)  e.  RR )
75, 6sylan 458 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  RR )
82ltp1d 9933 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( N  +  1 ) )
9 uz2m1nn 10542 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
109adantr 452 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  NN )
1110nnred 10007 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  RR )
1211, 2remulcld 9108 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( P  -  1 )  x.  N )  e.  RR )
13 peano2re 9231 . . . 4  |-  ( ( ( P  -  1 )  x.  N )  e.  RR  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
1412, 13syl 16 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
15 1re 9082 . . . . 5  |-  1  e.  RR
1615a1i 11 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  e.  RR )
17 nn0ge0 10239 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_  N )
1817adantl 453 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  N )
1910nnge1d 10034 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  <_  ( P  -  1 ) )
202, 11, 18, 19lemulge12d 9941 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( ( P  - 
1 )  x.  N
) )
212, 12, 16, 20leadd1dd 9632 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( ( ( P  -  1 )  x.  N )  +  1 ) )
225adantr 452 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  P  e.  RR )
23 simpr 448 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
24 2nn0 10230 . . . . . . 7  |-  2  e.  NN0
25 eluznn0 10538 . . . . . . 7  |-  ( ( 2  e.  NN0  /\  P  e.  ( ZZ>= ` 
2 ) )  ->  P  e.  NN0 )
2624, 25mpan 652 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN0 )
27 nn0ge0 10239 . . . . . 6  |-  ( P  e.  NN0  ->  0  <_  P )
2826, 27syl 16 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <_  P )
2928adantr 452 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  P )
30 bernneq2 11498 . . . 4  |-  ( ( P  e.  RR  /\  N  e.  NN0  /\  0  <_  P )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
3122, 23, 29, 30syl3anc 1184 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
324, 14, 7, 21, 31letrd 9219 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( P ^ N ) )
332, 4, 7, 8, 32ltletrd 9222 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   2c2 10041   NN0cn0 10213   ZZ>=cuz 10480   ^cexp 11374
This theorem is referenced by:  climcnds  12623  bitsfzo  12939  bitsinv1  12946  pcfaclem  13259  pcfac  13260  chpchtsum  20995  bposlem1  21060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-seq 11316  df-exp 11375
  Copyright terms: Public domain W3C validator