MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Unicode version

Theorem bernneq3 11229
Description: A corollary of bernneq 11227. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 9974 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
21adantl 452 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  RR )
3 peano2re 8985 . . 3  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
42, 3syl 15 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  RR )
5 eluzelre 10239 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
6 reexpcl 11120 . . 3  |-  ( ( P  e.  RR  /\  N  e.  NN0 )  -> 
( P ^ N
)  e.  RR )
75, 6sylan 457 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  RR )
82ltp1d 9687 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( N  +  1 ) )
9 uz2m1nn 10292 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
109adantr 451 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  NN )
1110nnred 9761 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  RR )
1211, 2remulcld 8863 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( P  -  1 )  x.  N )  e.  RR )
13 peano2re 8985 . . . 4  |-  ( ( ( P  -  1 )  x.  N )  e.  RR  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
1412, 13syl 15 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
15 1re 8837 . . . . 5  |-  1  e.  RR
1615a1i 10 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  e.  RR )
17 nn0ge0 9991 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_  N )
1817adantl 452 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  N )
1910nnge1d 9788 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  <_  ( P  -  1 ) )
202, 11, 18, 19lemulge12d 9695 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( ( P  - 
1 )  x.  N
) )
212, 12, 16, 20leadd1dd 9386 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( ( ( P  -  1 )  x.  N )  +  1 ) )
225adantr 451 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  P  e.  RR )
23 simpr 447 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
24 2nn0 9982 . . . . . . 7  |-  2  e.  NN0
25 eluznn0 10288 . . . . . . 7  |-  ( ( 2  e.  NN0  /\  P  e.  ( ZZ>= ` 
2 ) )  ->  P  e.  NN0 )
2624, 25mpan 651 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN0 )
27 nn0ge0 9991 . . . . . 6  |-  ( P  e.  NN0  ->  0  <_  P )
2826, 27syl 15 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <_  P )
2928adantr 451 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  P )
30 bernneq2 11228 . . . 4  |-  ( ( P  e.  RR  /\  N  e.  NN0  /\  0  <_  P )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
3122, 23, 29, 30syl3anc 1182 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
324, 14, 7, 21, 31letrd 8973 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( P ^ N ) )
332, 4, 7, 8, 32ltletrd 8976 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965   ZZ>=cuz 10230   ^cexp 11104
This theorem is referenced by:  climcnds  12310  bitsfzo  12626  bitsinv1  12633  pcfaclem  12946  pcfac  12947  chpchtsum  20458  bposlem1  20523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator