MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem3 Unicode version

Theorem bezoutlem3 12719
Description: Lemma for bezout 12721. (Contributed by Mario Carneiro, 22-Feb-2014.)
Hypotheses
Ref Expression
bezout.1  |-  M  =  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) }
bezout.3  |-  ( ph  ->  A  e.  ZZ )
bezout.4  |-  ( ph  ->  B  e.  ZZ )
bezout.2  |-  G  =  sup ( M ,  RR ,  `'  <  )
bezout.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlem3  |-  ( ph  ->  ( C  e.  M  ->  G  ||  C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, G, y, z    ph, x, y, z   
x, C, y, z   
x, M, y
Allowed substitution hint:    M( z)

Proof of Theorem bezoutlem3
Dummy variables  t 
s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  M )  ->  C  e.  M )
2 eqeq1 2289 . . . . . . . . . . . . 13  |-  ( z  =  C  ->  (
z  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  C  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
322rexbidv 2586 . . . . . . . . . . . 12  |-  ( z  =  C  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  C  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
4 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( x  =  s  ->  ( A  x.  x )  =  ( A  x.  s ) )
54oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( x  =  s  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  s )  +  ( B  x.  y
) ) )
65eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  ( C  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  C  =  ( ( A  x.  s )  +  ( B  x.  y ) ) ) )
7 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( y  =  t  ->  ( B  x.  y )  =  ( B  x.  t ) )
87oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
( A  x.  s
)  +  ( B  x.  y ) )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
98eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  y ) )  <->  C  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
106, 9cbvrex2v 2773 . . . . . . . . . . . 12  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  C  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
113, 10syl6bb 252 . . . . . . . . . . 11  |-  ( z  =  C  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
12 bezout.1 . . . . . . . . . . 11  |-  M  =  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) }
1311, 12elrab2 2925 . . . . . . . . . 10  |-  ( C  e.  M  <->  ( C  e.  NN  /\  E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
141, 13sylib 188 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  ( C  e.  NN  /\  E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
1514simpld 445 . . . . . . . 8  |-  ( (
ph  /\  C  e.  M )  ->  C  e.  NN )
1615nnred 9761 . . . . . . 7  |-  ( (
ph  /\  C  e.  M )  ->  C  e.  RR )
17 bezout.3 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
18 bezout.4 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
19 bezout.2 . . . . . . . . . . . 12  |-  G  =  sup ( M ,  RR ,  `'  <  )
20 bezout.5 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
2112, 17, 18, 19, 20bezoutlem2 12718 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  M )
22 oveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
2322oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  u )  +  ( B  x.  y
) ) )
2423eqeq2d 2294 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
z  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  z  =  ( ( A  x.  u )  +  ( B  x.  y ) ) ) )
25 oveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  ( B  x.  y )  =  ( B  x.  v ) )
2625oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( y  =  v  ->  (
( A  x.  u
)  +  ( B  x.  y ) )  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
2726eqeq2d 2294 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
z  =  ( ( A  x.  u )  +  ( B  x.  y ) )  <->  z  =  ( ( A  x.  u )  +  ( B  x.  v ) ) ) )
2824, 27cbvrex2v 2773 . . . . . . . . . . . . 13  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  z  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
29 eqeq1 2289 . . . . . . . . . . . . . 14  |-  ( z  =  G  ->  (
z  =  ( ( A  x.  u )  +  ( B  x.  v ) )  <->  G  =  ( ( A  x.  u )  +  ( B  x.  v ) ) ) )
30292rexbidv 2586 . . . . . . . . . . . . 13  |-  ( z  =  G  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  z  =  ( ( A  x.  u )  +  ( B  x.  v
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) ) )
3128, 30syl5bb 248 . . . . . . . . . . . 12  |-  ( z  =  G  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) ) )
3231, 12elrab2 2925 . . . . . . . . . . 11  |-  ( G  e.  M  <->  ( G  e.  NN  /\  E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) ) )
3321, 32sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( G  e.  NN  /\ 
E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u )  +  ( B  x.  v
) ) ) )
3433simpld 445 . . . . . . . . 9  |-  ( ph  ->  G  e.  NN )
3534nnrpd 10389 . . . . . . . 8  |-  ( ph  ->  G  e.  RR+ )
3635adantr 451 . . . . . . 7  |-  ( (
ph  /\  C  e.  M )  ->  G  e.  RR+ )
37 modlt 10981 . . . . . . 7  |-  ( ( C  e.  RR  /\  G  e.  RR+ )  -> 
( C  mod  G
)  <  G )
3816, 36, 37syl2anc 642 . . . . . 6  |-  ( (
ph  /\  C  e.  M )  ->  ( C  mod  G )  < 
G )
3915nnzd 10116 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  C  e.  ZZ )
4034adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  G  e.  NN )
4139, 40zmodcld 10990 . . . . . . . 8  |-  ( (
ph  /\  C  e.  M )  ->  ( C  mod  G )  e. 
NN0 )
4241nn0red 10019 . . . . . . 7  |-  ( (
ph  /\  C  e.  M )  ->  ( C  mod  G )  e.  RR )
4334nnred 9761 . . . . . . . 8  |-  ( ph  ->  G  e.  RR )
4443adantr 451 . . . . . . 7  |-  ( (
ph  /\  C  e.  M )  ->  G  e.  RR )
4542, 44ltnled 8966 . . . . . 6  |-  ( (
ph  /\  C  e.  M )  ->  (
( C  mod  G
)  <  G  <->  -.  G  <_  ( C  mod  G
) ) )
4638, 45mpbid 201 . . . . 5  |-  ( (
ph  /\  C  e.  M )  ->  -.  G  <_  ( C  mod  G ) )
4714simprd 449 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
4833simprd 449 . . . . . . . . . . . . 13  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
4948ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  C  e.  M )  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  ->  E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
50 simprll 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  s  e.  ZZ )
51 simprrl 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  u  e.  ZZ )
5216, 40nndivred 9794 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  C  e.  M )  ->  ( C  /  G )  e.  RR )
5352flcld 10930 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  C  e.  M )  ->  ( |_ `  ( C  /  G ) )  e.  ZZ )
5453adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( |_ `  ( C  /  G
) )  e.  ZZ )
5551, 54zmulcld 10123 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( u  x.  ( |_ `  ( C  /  G ) ) )  e.  ZZ )
5650, 55zsubcld 10122 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  e.  ZZ )
57 simprlr 739 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  t  e.  ZZ )
58 simprrr 741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  v  e.  ZZ )
5958, 54zmulcld 10123 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( v  x.  ( |_ `  ( C  /  G ) ) )  e.  ZZ )
6057, 59zsubcld 10122 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) )  e.  ZZ )
6117zcnd 10118 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A  e.  CC )
6261ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  A  e.  CC )
6350zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  s  e.  CC )
6462, 63mulcld 8855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( A  x.  s )  e.  CC )
6518zcnd 10118 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  e.  CC )
6665ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  B  e.  CC )
6757zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  t  e.  CC )
6866, 67mulcld 8855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( B  x.  t )  e.  CC )
6955zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( u  x.  ( |_ `  ( C  /  G ) ) )  e.  CC )
7062, 69mulcld 8855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  e.  CC )
7159zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( v  x.  ( |_ `  ( C  /  G ) ) )  e.  CC )
7266, 71mulcld 8855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) )  e.  CC )
7364, 68, 70, 72addsub4d 9204 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  +  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )  =  ( ( ( A  x.  s )  -  ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( ( B  x.  t
)  -  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) ) )
7451zcnd 10118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  u  e.  CC )
7562, 74mulcld 8855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( A  x.  u )  e.  CC )
7658zcnd 10118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  v  e.  CC )
7766, 76mulcld 8855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( B  x.  v )  e.  CC )
7853zcnd 10118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  C  e.  M )  ->  ( |_ `  ( C  /  G ) )  e.  CC )
7978adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( |_ `  ( C  /  G
) )  e.  CC )
8075, 77, 79adddird 8860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G ) ) )  =  ( ( ( A  x.  u
)  x.  ( |_
`  ( C  /  G ) ) )  +  ( ( B  x.  v )  x.  ( |_ `  ( C  /  G ) ) ) ) )
8162, 74, 79mulassd 8858 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( A  x.  u )  x.  ( |_ `  ( C  /  G ) ) )  =  ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )
8266, 76, 79mulassd 8858 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( B  x.  v )  x.  ( |_ `  ( C  /  G ) ) )  =  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) )
8381, 82oveq12d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  u )  x.  ( |_ `  ( C  /  G
) ) )  +  ( ( B  x.  v )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  ( u  x.  ( |_ `  ( C  /  G
) ) ) )  +  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
8480, 83eqtrd 2315 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G ) ) )  =  ( ( A  x.  ( u  x.  ( |_ `  ( C  /  G
) ) ) )  +  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
8584oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v
) )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( ( A  x.  s
)  +  ( B  x.  t ) )  -  ( ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  +  ( B  x.  ( v  x.  ( |_ `  ( C  /  G
) ) ) ) ) ) )
8662, 63, 69subdid 9235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( A  x.  ( s  -  (
u  x.  ( |_
`  ( C  /  G ) ) ) ) )  =  ( ( A  x.  s
)  -  ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
8766, 67, 71subdid 9235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( B  x.  ( t  -  (
v  x.  ( |_
`  ( C  /  G ) ) ) ) )  =  ( ( B  x.  t
)  -  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
8886, 87oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )  =  ( ( ( A  x.  s )  -  ( A  x.  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( ( B  x.  t
)  -  ( B  x.  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) ) )
8973, 85, 883eqtr4d 2325 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v
) )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  (
t  -  ( v  x.  ( |_ `  ( C  /  G
) ) ) ) ) ) )
90 oveq2 5866 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( A  x.  x )  =  ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
9190oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( ( A  x.  x )  +  ( B  x.  y ) )  =  ( ( A  x.  ( s  -  (
u  x.  ( |_
`  ( C  /  G ) ) ) ) )  +  ( B  x.  y ) ) )
9291eqeq2d 2294 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( (
( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G
) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  ( (
( A  x.  s
)  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  (
s  -  ( u  x.  ( |_ `  ( C  /  G
) ) ) ) )  +  ( B  x.  y ) ) ) )
93 oveq2 5866 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( B  x.  y )  =  ( B  x.  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) )
9493oveq2d 5874 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  y
) )  =  ( ( A  x.  (
s  -  ( u  x.  ( |_ `  ( C  /  G
) ) ) ) )  +  ( B  x.  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) ) ) ) )
9594eqeq2d 2294 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( t  -  ( v  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( (
( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G
) ) ) )  =  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  y ) )  <->  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v
) )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  (
t  -  ( v  x.  ( |_ `  ( C  /  G
) ) ) ) ) ) ) )
9692, 95rspc2ev 2892 . . . . . . . . . . . . . . . . 17  |-  ( ( ( s  -  (
u  x.  ( |_
`  ( C  /  G ) ) ) )  e.  ZZ  /\  ( t  -  (
v  x.  ( |_
`  ( C  /  G ) ) ) )  e.  ZZ  /\  ( ( ( A  x.  s )  +  ( B  x.  t
) )  -  (
( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_
`  ( C  /  G ) ) ) )  =  ( ( A  x.  ( s  -  ( u  x.  ( |_ `  ( C  /  G ) ) ) ) )  +  ( B  x.  (
t  -  ( v  x.  ( |_ `  ( C  /  G
) ) ) ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G
) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
9756, 60, 89, 96syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G
) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
98 oveq1 5865 . . . . . . . . . . . . . . . . . . 19  |-  ( G  =  ( ( A  x.  u )  +  ( B  x.  v
) )  ->  ( G  x.  ( |_ `  ( C  /  G
) ) )  =  ( ( ( A  x.  u )  +  ( B  x.  v
) )  x.  ( |_ `  ( C  /  G ) ) ) )
99 oveq12 5867 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  /\  ( G  x.  ( |_ `  ( C  /  G ) ) )  =  ( ( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G ) ) ) )  ->  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G
) ) ) ) )
10098, 99sylan2 460 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  /\  G  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( ( A  x.  s
)  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_ `  ( C  /  G ) ) ) ) )
101100eqeq1d 2291 . . . . . . . . . . . . . . . . 17  |-  ( ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  /\  G  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  ( ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  <-> 
( ( ( A  x.  s )  +  ( B  x.  t
) )  -  (
( ( A  x.  u )  +  ( B  x.  v ) )  x.  ( |_
`  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
1021012rexbidv 2586 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  /\  G  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( ( A  x.  s )  +  ( B  x.  t ) )  -  ( ( ( A  x.  u )  +  ( B  x.  v
) )  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
10397, 102syl5ibrcom 213 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( ( C  =  ( ( A  x.  s )  +  ( B  x.  t
) )  /\  G  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
104103exp3acom23 1362 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  C  e.  M )  /\  (
( s  e.  ZZ  /\  t  e.  ZZ )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) ) )  ->  ( G  =  ( ( A  x.  u )  +  ( B  x.  v ) )  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  t
) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) ) )
105104expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  C  e.  M )  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  ->  ( (
u  e.  ZZ  /\  v  e.  ZZ )  ->  ( G  =  ( ( A  x.  u
)  +  ( B  x.  v ) )  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) ) ) )
106105rexlimdvv 2673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  C  e.  M )  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  G  =  ( ( A  x.  u
)  +  ( B  x.  v ) )  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) ) )
10749, 106mpd 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  M )  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  t
) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
108107ex 423 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  M )  ->  (
( s  e.  ZZ  /\  t  e.  ZZ )  ->  ( C  =  ( ( A  x.  s )  +  ( B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) ) )
109108rexlimdvv 2673 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  C  =  ( ( A  x.  s )  +  ( B  x.  t
) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
11047, 109mpd 14 . . . . . . . 8  |-  ( (
ph  /\  C  e.  M )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
111 modval 10975 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  G  e.  RR+ )  -> 
( C  mod  G
)  =  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) ) )
11216, 36, 111syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  C  e.  M )  ->  ( C  mod  G )  =  ( C  -  ( G  x.  ( |_ `  ( C  /  G
) ) ) ) )
113112eqcomd 2288 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  M )  ->  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( C  mod  G ) )
114113eqeq1d 2291 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  M )  ->  (
( C  -  ( G  x.  ( |_ `  ( C  /  G
) ) ) )  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  ( C  mod  G )  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
1151142rexbidv 2586 . . . . . . . 8  |-  ( (
ph  /\  C  e.  M )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  -  ( G  x.  ( |_ `  ( C  /  G ) ) ) )  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  mod  G )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
116110, 115mpbid 201 . . . . . . 7  |-  ( (
ph  /\  C  e.  M )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  mod  G )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
117 eqeq1 2289 . . . . . . . . . 10  |-  ( z  =  ( C  mod  G )  ->  ( z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  ( C  mod  G )  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
1181172rexbidv 2586 . . . . . . . . 9  |-  ( z  =  ( C  mod  G )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  mod  G )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
119118, 12elrab2 2925 . . . . . . . 8  |-  ( ( C  mod  G )  e.  M  <->  ( ( C  mod  G )  e.  NN  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( C  mod  G )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
120119simplbi2com 1364 . . . . . . 7  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  mod  G )  =  ( ( A  x.  x )  +  ( B  x.  y ) )  ->  ( ( C  mod  G )  e.  NN  ->  ( C  mod  G )  e.  M
) )
121116, 120syl 15 . . . . . 6  |-  ( (
ph  /\  C  e.  M )  ->  (
( C  mod  G
)  e.  NN  ->  ( C  mod  G )  e.  M ) )
122 ssrab2 3258 . . . . . . . . . 10  |-  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) }  C_  NN
12312, 122eqsstri 3208 . . . . . . . . 9  |-  M  C_  NN
124 nnuz 10263 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
125123, 124sseqtri 3210 . . . . . . . 8  |-  M  C_  ( ZZ>= `  1 )
126 infmssuzle 10300 . . . . . . . 8  |-  ( ( M  C_  ( ZZ>= ` 
1 )  /\  ( C  mod  G )  e.  M )  ->  sup ( M ,  RR ,  `'  <  )  <_  ( C  mod  G ) )
127125, 126mpan 651 . . . . . . 7  |-  ( ( C  mod  G )  e.  M  ->  sup ( M ,  RR ,  `'  <  )  <_  ( C  mod  G ) )
12819, 127syl5eqbr 4056 . . . . . 6  |-  ( ( C  mod  G )  e.  M  ->  G  <_  ( C  mod  G
) )
129121, 128syl6 29 . . . . 5  |-  ( (
ph  /\  C  e.  M )  ->  (
( C  mod  G
)  e.  NN  ->  G  <_  ( C  mod  G ) ) )
13046, 129mtod 168 . . . 4  |-  ( (
ph  /\  C  e.  M )  ->  -.  ( C  mod  G )  e.  NN )
131 elnn0 9967 . . . . . 6  |-  ( ( C  mod  G )  e.  NN0  <->  ( ( C  mod  G )  e.  NN  \/  ( C  mod  G )  =  0 ) )
13241, 131sylib 188 . . . . 5  |-  ( (
ph  /\  C  e.  M )  ->  (
( C  mod  G
)  e.  NN  \/  ( C  mod  G )  =  0 ) )
133132ord 366 . . . 4  |-  ( (
ph  /\  C  e.  M )  ->  ( -.  ( C  mod  G
)  e.  NN  ->  ( C  mod  G )  =  0 ) )
134130, 133mpd 14 . . 3  |-  ( (
ph  /\  C  e.  M )  ->  ( C  mod  G )  =  0 )
135 dvdsval3 12535 . . . 4  |-  ( ( G  e.  NN  /\  C  e.  ZZ )  ->  ( G  ||  C  <->  ( C  mod  G )  =  0 ) )
13640, 39, 135syl2anc 642 . . 3  |-  ( (
ph  /\  C  e.  M )  ->  ( G  ||  C  <->  ( C  mod  G )  =  0 ) )
137134, 136mpbird 223 . 2  |-  ( (
ph  /\  C  e.  M )  ->  G  ||  C )
138137ex 423 1  |-  ( ph  ->  ( C  e.  M  ->  G  ||  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547    C_ wss 3152   class class class wbr 4023   `'ccnv 4688   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   |_cfl 10924    mod cmo 10973    || cdivides 12531
This theorem is referenced by:  bezoutlem4  12720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532
  Copyright terms: Public domain W3C validator