Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Unicode version

Theorem bfplem1 25694
Description: Lemma for bfp 25696. The sequence  G, which simply starts from any point in the space and iterates  F, satisfies the property that the distance from  G ( n ) to  G ( n  + 
1 ) decreases by at least  K after each step. Thus, the total distance from any  G ( i ) to  G ( j ) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point  ( ( ~~> t `  J
) `  G ) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
bfp.8  |-  J  =  ( MetOpen `  D )
bfp.9  |-  ( ph  ->  A  e.  X )
bfp.10  |-  G  =  seq  1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
Assertion
Ref Expression
bfplem1  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
Distinct variable groups:    x, y, D    x, G, y    x, J, y    ph, x, y   
x, F, y    x, K, y    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bfplem1
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 18765 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 15 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 nnuz 10310 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
5 bfp.10 . . . . 5  |-  G  =  seq  1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
6 1z 10100 . . . . . 6  |-  1  e.  ZZ
76a1i 10 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
8 bfp.9 . . . . 5  |-  ( ph  ->  A  e.  X )
9 bfp.6 . . . . 5  |-  ( ph  ->  F : X --> X )
104, 5, 7, 8, 9algrf 12790 . . . 4  |-  ( ph  ->  G : NN --> X )
11 ffvelrn 5701 . . . . . . 7  |-  ( ( F : X --> X  /\  A  e.  X )  ->  ( F `  A
)  e.  X )
129, 8, 11syl2anc 642 . . . . . 6  |-  ( ph  ->  ( F `  A
)  e.  X )
13 metcl 17949 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  ( F `  A )  e.  X )  ->  ( A D ( F `  A ) )  e.  RR )
143, 8, 12, 13syl3anc 1182 . . . . 5  |-  ( ph  ->  ( A D ( F `  A ) )  e.  RR )
15 bfp.4 . . . . 5  |-  ( ph  ->  K  e.  RR+ )
1614, 15rerpdivcld 10464 . . . 4  |-  ( ph  ->  ( ( A D ( F `  A
) )  /  K
)  e.  RR )
17 bfp.5 . . . 4  |-  ( ph  ->  K  <  1 )
18 fveq2 5563 . . . . . . . . 9  |-  ( j  =  1  ->  ( G `  j )  =  ( G ` 
1 ) )
19 oveq1 5907 . . . . . . . . . 10  |-  ( j  =  1  ->  (
j  +  1 )  =  ( 1  +  1 ) )
2019fveq2d 5567 . . . . . . . . 9  |-  ( j  =  1  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( 1  +  1 ) ) )
2118, 20oveq12d 5918 . . . . . . . 8  |-  ( j  =  1  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 1 ) D ( G `  (
1  +  1 ) ) ) )
22 oveq2 5908 . . . . . . . . 9  |-  ( j  =  1  ->  ( K ^ j )  =  ( K ^ 1 ) )
2322oveq2d 5916 . . . . . . . 8  |-  ( j  =  1  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ 1 ) ) )
2421, 23breq12d 4073 . . . . . . 7  |-  ( j  =  1  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  1 ) D ( G `  ( 1  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) ) ) )
2524imbi2d 307 . . . . . 6  |-  ( j  =  1  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  1
) D ( G `
 ( 1  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ 1 ) ) ) ) )
26 fveq2 5563 . . . . . . . . 9  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
27 oveq1 5907 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
2827fveq2d 5567 . . . . . . . . 9  |-  ( j  =  k  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( k  +  1 ) ) )
2926, 28oveq12d 5918 . . . . . . . 8  |-  ( j  =  k  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )
30 oveq2 5908 . . . . . . . . 9  |-  ( j  =  k  ->  ( K ^ j )  =  ( K ^ k
) )
3130oveq2d 5916 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) ) )
3229, 31breq12d 4073 . . . . . . 7  |-  ( j  =  k  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) ) )
3332imbi2d 307 . . . . . 6  |-  ( j  =  k  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) ) ) ) )
34 fveq2 5563 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( G `  j )  =  ( G `  ( k  +  1 ) ) )
35 oveq1 5907 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
3635fveq2d 5567 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( ( k  +  1 )  +  1 ) ) )
3734, 36oveq12d 5918 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 ( k  +  1 ) ) D ( G `  (
( k  +  1 )  +  1 ) ) ) )
38 oveq2 5908 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( K ^ j )  =  ( K ^ (
k  +  1 ) ) )
3938oveq2d 5916 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) )
4037, 39breq12d 4073 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ ( k  +  1 ) ) ) ) )
4140imbi2d 307 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) ) )
4214leidd 9384 . . . . . . 7  |-  ( ph  ->  ( A D ( F `  A ) )  <_  ( A D ( F `  A ) ) )
434, 5, 7, 8algr0 12789 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  =  A )
44 1nn 9802 . . . . . . . . . 10  |-  1  e.  NN
454, 5, 7, 8, 9algrp1 12791 . . . . . . . . . 10  |-  ( (
ph  /\  1  e.  NN )  ->  ( G `
 ( 1  +  1 ) )  =  ( F `  ( G `  1 )
) )
4644, 45mpan2 652 . . . . . . . . 9  |-  ( ph  ->  ( G `  (
1  +  1 ) )  =  ( F `
 ( G ` 
1 ) ) )
4743fveq2d 5567 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( G `  1 )
)  =  ( F `
 A ) )
4846, 47eqtrd 2348 . . . . . . . 8  |-  ( ph  ->  ( G `  (
1  +  1 ) )  =  ( F `
 A ) )
4943, 48oveq12d 5918 . . . . . . 7  |-  ( ph  ->  ( ( G ` 
1 ) D ( G `  ( 1  +  1 ) ) )  =  ( A D ( F `  A ) ) )
5015rpred 10437 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  RR )
5150recnd 8906 . . . . . . . . . 10  |-  ( ph  ->  K  e.  CC )
5251exp1d 11287 . . . . . . . . 9  |-  ( ph  ->  ( K ^ 1 )  =  K )
5352oveq2d 5916 . . . . . . . 8  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  K ) )
5414recnd 8906 . . . . . . . . 9  |-  ( ph  ->  ( A D ( F `  A ) )  e.  CC )
5515rpne0d 10442 . . . . . . . . 9  |-  ( ph  ->  K  =/=  0 )
5654, 51, 55divcan1d 9582 . . . . . . . 8  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  K
)  =  ( A D ( F `  A ) ) )
5753, 56eqtrd 2348 . . . . . . 7  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) )  =  ( A D ( F `  A
) ) )
5842, 49, 573brtr4d 4090 . . . . . 6  |-  ( ph  ->  ( ( G ` 
1 ) D ( G `  ( 1  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
1 ) ) )
59 ffvelrn 5701 . . . . . . . . . . . . 13  |-  ( ( G : NN --> X  /\  k  e.  NN )  ->  ( G `  k
)  e.  X )
6010, 59sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  X )
61 peano2nn 9803 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
62 ffvelrn 5701 . . . . . . . . . . . . 13  |-  ( ( G : NN --> X  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  X
)
6310, 61, 62syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( k  +  1 ) )  e.  X )
6460, 63jca 518 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X ) )
65 bfp.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
6665ralrimivva 2669 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
6766adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
68 fveq2 5563 . . . . . . . . . . . . . 14  |-  ( x  =  ( G `  k )  ->  ( F `  x )  =  ( F `  ( G `  k ) ) )
6968oveq1d 5915 . . . . . . . . . . . . 13  |-  ( x  =  ( G `  k )  ->  (
( F `  x
) D ( F `
 y ) )  =  ( ( F `
 ( G `  k ) ) D ( F `  y
) ) )
70 oveq1 5907 . . . . . . . . . . . . . 14  |-  ( x  =  ( G `  k )  ->  (
x D y )  =  ( ( G `
 k ) D y ) )
7170oveq2d 5916 . . . . . . . . . . . . 13  |-  ( x  =  ( G `  k )  ->  ( K  x.  ( x D y ) )  =  ( K  x.  ( ( G `  k ) D y ) ) )
7269, 71breq12d 4073 . . . . . . . . . . . 12  |-  ( x  =  ( G `  k )  ->  (
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  y
) )  <_  ( K  x.  ( ( G `  k ) D y ) ) ) )
73 fveq2 5563 . . . . . . . . . . . . . 14  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  ( F `  y )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
7473oveq2d 5916 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( F `  ( G `  k )
) D ( F `
 y ) )  =  ( ( F `
 ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) ) )
75 oveq2 5908 . . . . . . . . . . . . . 14  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( G `  k
) D y )  =  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )
7675oveq2d 5916 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  ( K  x.  ( ( G `  k ) D y ) )  =  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) )
7774, 76breq12d 4073 . . . . . . . . . . . 12  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( ( F `  ( G `  k ) ) D ( F `
 y ) )  <_  ( K  x.  ( ( G `  k ) D y ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) ) )
7872, 77rspc2v 2924 . . . . . . . . . . 11  |-  ( ( ( G `  k
)  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X )  -> 
( A. x  e.  X  A. y  e.  X  ( ( F `
 x ) D ( F `  y
) )  <_  ( K  x.  ( x D y ) )  ->  ( ( F `
 ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) ) )
7964, 67, 78sylc 56 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) )
803adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
819adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  F : X
--> X )
82 ffvelrn 5701 . . . . . . . . . . . . 13  |-  ( ( F : X --> X  /\  ( G `  k )  e.  X )  -> 
( F `  ( G `  k )
)  e.  X )
8381, 60, 82syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( G `  k ) )  e.  X )
84 ffvelrn 5701 . . . . . . . . . . . . 13  |-  ( ( F : X --> X  /\  ( G `  ( k  +  1 ) )  e.  X )  -> 
( F `  ( G `  ( k  +  1 ) ) )  e.  X )
8581, 63, 84syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( G `  ( k  +  1 ) ) )  e.  X )
86 metcl 17949 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  k ) )  e.  X  /\  ( F `
 ( G `  ( k  +  1 ) ) )  e.  X )  ->  (
( F `  ( G `  k )
) D ( F `
 ( G `  ( k  +  1 ) ) ) )  e.  RR )
8780, 83, 85, 86syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  e.  RR )
8850adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  K  e.  RR )
89 metcl 17949 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  k )  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X )  -> 
( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR )
9080, 60, 63, 89syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR )
9188, 90remulcld 8908 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( K  x.  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )  e.  RR )
9216adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A D ( F `
 A ) )  /  K )  e.  RR )
9361adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
9493nnnn0d 10065 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e. 
NN0 )
9588, 94reexpcld 11309 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ ( k  +  1 ) )  e.  RR )
9692, 95remulcld 8908 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) )  e.  RR )
97 letr 8959 . . . . . . . . . . 11  |-  ( ( ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  e.  RR  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  e.  RR  /\  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) )  e.  RR )  -> 
( ( ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) )  ->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
9887, 91, 96, 97syl3anc 1182 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) )  -> 
( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
9979, 98mpand 656 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) )  ->  (
( F `  ( G `  k )
) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
100 nnnn0 10019 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  NN0 )
101 reexpcl 11167 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  k  e.  NN0 )  -> 
( K ^ k
)  e.  RR )
10250, 100, 101syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ k )  e.  RR )
10392, 102remulcld 8908 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
k ) )  e.  RR )
10415rpgt0d 10440 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  K )
105104adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
K )
106 lemul1 9653 . . . . . . . . . . 11  |-  ( ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR  /\  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) )  e.  RR  /\  ( K  e.  RR  /\  0  <  K ) )  -> 
( ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  <-> 
( ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  x.  K
)  <_  ( (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K ) ) )
10790, 103, 88, 105, 106syl112anc 1186 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  <->  ( (
( G `  k
) D ( G `
 ( k  +  1 ) ) )  x.  K )  <_ 
( ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  x.  K
) ) )
10890recnd 8906 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  CC )
10951adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  K  e.  CC )
110108, 109mulcomd 8901 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  x.  K )  =  ( K  x.  (
( G `  k
) D ( G `
 ( k  +  1 ) ) ) ) )
11192recnd 8906 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A D ( F `
 A ) )  /  K )  e.  CC )
112102recnd 8906 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ k )  e.  CC )
113111, 112, 109mulassd 8903 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  (
( K ^ k
)  x.  K ) ) )
114 expp1 11157 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  k  e.  NN0 )  -> 
( K ^ (
k  +  1 ) )  =  ( ( K ^ k )  x.  K ) )
11551, 100, 114syl2an 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ ( k  +  1 ) )  =  ( ( K ^
k )  x.  K
) )
116115oveq2d 5916 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  (
( K ^ k
)  x.  K ) ) )
117113, 116eqtr4d 2351 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ ( k  +  1 ) ) ) )
118110, 117breq12d 4073 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  x.  K )  <_  ( ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
k ) )  x.  K )  <->  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
119107, 118bitrd 244 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  <->  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
1204, 5, 7, 8, 9algrp1 12791 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( k  +  1 ) )  =  ( F `  ( G `  k )
) )
1214, 5, 7, 8, 9algrp1 12791 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( (
k  +  1 )  +  1 ) )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
12261, 121sylan2 460 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( ( k  +  1 )  +  1 ) )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
123120, 122oveq12d 5918 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  =  ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) ) )
124123breq1d 4070 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
12599, 119, 1243imtr4d 259 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  ->  (
( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
126125expcom 424 . . . . . . 7  |-  ( k  e.  NN  ->  ( ph  ->  ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) )  ->  ( ( G `
 ( k  +  1 ) ) D ( G `  (
( k  +  1 )  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) ) )
127126a2d 23 . . . . . 6  |-  ( k  e.  NN  ->  (
( ph  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) )  ->  ( ph  ->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) ) ) ) )
12825, 33, 41, 33, 58, 127nnind 9809 . . . . 5  |-  ( k  e.  NN  ->  ( ph  ->  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) ) ) )
129128impcom 419 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) )
1303, 10, 16, 15, 17, 129geomcau 25624 . . 3  |-  ( ph  ->  G  e.  ( Cau `  D ) )
131 bfp.8 . . . 4  |-  J  =  ( MetOpen `  D )
132131cmetcau 18768 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  G  e.  ( Cau `  D
) )  ->  G  e.  dom  ( ~~> t `  J ) )
1331, 130, 132syl2anc 642 . 2  |-  ( ph  ->  G  e.  dom  ( ~~> t `  J )
)
134 metxmet 17951 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
135131methaus 18118 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Haus )
1363, 134, 1353syl 18 . . 3  |-  ( ph  ->  J  e.  Haus )
137 lmfun 17165 . . 3  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
138 funfvbrb 5676 . . 3  |-  ( Fun  ( ~~> t `  J
)  ->  ( G  e.  dom  ( ~~> t `  J )  <->  G ( ~~> t `  J )
( ( ~~> t `  J ) `  G
) ) )
139136, 137, 1383syl 18 . 2  |-  ( ph  ->  ( G  e.  dom  (
~~> t `  J )  <-> 
G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) ) )
140133, 139mpbid 201 1  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   (/)c0 3489   {csn 3674   class class class wbr 4060    X. cxp 4724   dom cdm 4726    o. ccom 4730   Fun wfun 5286   -->wf 5288   ` cfv 5292  (class class class)co 5900   1stc1st 6162   CCcc 8780   RRcr 8781   0cc0 8782   1c1 8783    + caddc 8785    x. cmul 8787    < clt 8912    <_ cle 8913    / cdiv 9468   NNcn 9791   NN0cn0 10012   ZZcz 10071   RR+crp 10401    seq cseq 11093   ^cexp 11151   * Metcxmt 16418   Metcme 16419   MetOpencmopn 16423   ~~> tclm 17012   Hauscha 17092   Caucca 18732   CMetcms 18733
This theorem is referenced by:  bfplem2  25695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-map 6817  df-pm 6818  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-oi 7270  df-card 7617  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-ico 10709  df-icc 10710  df-fz 10830  df-fzo 10918  df-fl 10972  df-seq 11094  df-exp 11152  df-hash 11385  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-clim 12009  df-rlim 12010  df-sum 12206  df-rest 13376  df-topgen 13393  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-fbas 16429  df-fg 16430  df-top 16692  df-bases 16694  df-topon 16695  df-ntr 16813  df-nei 16891  df-lm 17015  df-haus 17099  df-fil 17593  df-fm 17685  df-flim 17686  df-flf 17687  df-cfil 18734  df-cau 18735  df-cmet 18736
  Copyright terms: Public domain W3C validator