MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Unicode version

Theorem bi2anan9r 846
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1  |-  ( ph  ->  ( ps  <->  ch )
)
bi2an9.2  |-  ( th 
->  ( ta  <->  et )
)
Assertion
Ref Expression
bi2anan9r  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 bi2an9.2 . . 3  |-  ( th 
->  ( ta  <->  et )
)
31, 2bi2anan9 845 . 2  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
43ancoms 441 1  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360
This theorem is referenced by:  efrn2lp  4566  ltsosr  8971  seqf1olem2  11365  seqf1o  11366  pcval  13220  fneval  26369  prtlem5  26707  rmydioph  27087  wepwsolem  27118  aomclem8  27138  usg2wlkeq  28306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator