MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi3 Structured version   Unicode version

Theorem bi3 181
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.)
Assertion
Ref Expression
bi3  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ph )  ->  ( ph  <->  ps ) ) )

Proof of Theorem bi3
StepHypRef Expression
1 df-bi 179 . . 3  |-  -.  (
( ( ph  <->  ps )  ->  -.  ( ( ph  ->  ps )  ->  -.  ( ps  ->  ph )
) )  ->  -.  ( -.  ( ( ph  ->  ps )  ->  -.  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
2 simprim 145 . . 3  |-  ( -.  ( ( ( ph  <->  ps )  ->  -.  (
( ph  ->  ps )  ->  -.  ( ps  ->  ph ) ) )  ->  -.  ( -.  ( (
ph  ->  ps )  ->  -.  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )  -> 
( -.  ( (
ph  ->  ps )  ->  -.  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
31, 2ax-mp 5 . 2  |-  ( -.  ( ( ph  ->  ps )  ->  -.  ( ps  ->  ph ) )  -> 
( ph  <->  ps ) )
43expi 144 1  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ph )  ->  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178
This theorem is referenced by:  impbii  182  impbidd  183  dfbi1  186  bisym  283  eqsbc3rVD  29026  orbi1rVD  29034  3impexpVD  29042  3impexpbicomVD  29043  imbi12VD  29059  sbcim2gVD  29061  sb5ALTVD  29099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator