MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianfd Unicode version

Theorem bianfd 893
Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
Hypothesis
Ref Expression
bianfd.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
bianfd  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )

Proof of Theorem bianfd
StepHypRef Expression
1 bianfd.1 . 2  |-  ( ph  ->  -.  ps )
21intnanrd 884 . 2  |-  ( ph  ->  -.  ( ps  /\  ch ) )
31, 22falsed 341 1  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359
This theorem is referenced by:  eueq2  3052  eueq3  3053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator