MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianfi Structured version   Unicode version

Theorem bianfi 892
Description: A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
Hypothesis
Ref Expression
bianfi.1  |-  -.  ph
Assertion
Ref Expression
bianfi  |-  ( ph  <->  ( ps  /\  ph )
)

Proof of Theorem bianfi
StepHypRef Expression
1 bianfi.1 . 2  |-  -.  ph
21intnan 881 . 2  |-  -.  ( ps  /\  ph )
31, 22false 340 1  |-  ( ph  <->  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359
This theorem is referenced by:  in0  3653  opthprc  4925  ind1a  24418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator