MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibif Structured version   Unicode version

Theorem bibif 337
Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
Assertion
Ref Expression
bibif  |-  ( -. 
ps  ->  ( ( ph  <->  ps )  <->  -.  ph ) )

Proof of Theorem bibif
StepHypRef Expression
1 nbn2 336 . 2  |-  ( -. 
ps  ->  ( -.  ph  <->  ( ps  <->  ph ) ) )
2 bicom 193 . 2  |-  ( ( ps  <->  ph )  <->  ( ph  <->  ps ) )
31, 2syl6rbb 255 1  |-  ( -. 
ps  ->  ( ( ph  <->  ps )  <->  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178
This theorem is referenced by:  nbn  338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator