Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  biimpa21 Unicode version

Theorem biimpa21 28634
Description: biimpa 470 with commutation of the first and second conjuncts of the assertion. (Contributed by Alan Sare, 11-Sep-2016.)
Hypothesis
Ref Expression
biimpa21.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimpa21  |-  ( ( ps  /\  ph )  ->  ch )

Proof of Theorem biimpa21
StepHypRef Expression
1 biimpa21.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimpa 470 . 2  |-  ( (
ph  /\  ps )  ->  ch )
32ancoms 439 1  |-  ( ( ps  /\  ph )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  2sb5ndALT  29025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator