MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom3 Unicode version

Theorem binom3 11315
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )

Proof of Theorem binom3
StepHypRef Expression
1 df-3 9895 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5956 . . 3  |-  ( ( A  +  B ) ^ 3 )  =  ( ( A  +  B ) ^ (
2  +  1 ) )
3 addcl 8909 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 2nn0 10074 . . . 4  |-  2  e.  NN0
5 expp1 11203 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
72, 6syl5eq 2402 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
8 sqcl 11259 . . . . 5  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  e.  CC )
93, 8syl 15 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
10 simpl 443 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 simpr 447 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
129, 10, 11adddid 8949 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) ) )
13 binom2 11311 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
1413oveq1d 5960 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  A ) )
15 sqcl 11259 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1610, 15syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
17 2cn 9906 . . . . . . . 8  |-  2  e.  CC
18 mulcl 8911 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
19 mulcl 8911 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
2017, 18, 19sylancr 644 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
2116, 20addcld 8944 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  e.  CC )
22 sqcl 11259 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
2311, 22syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2421, 23, 10adddird 8950 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) ) )
2516, 20, 10adddird 8950 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
261oveq2i 5956 . . . . . . . . 9  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
27 expp1 11203 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2810, 4, 27sylancl 643 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2926, 28syl5eq 2402 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  =  ( ( A ^ 2 )  x.  A ) )
30 sqval 11256 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
3110, 30syl 15 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3231oveq1d 5960 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  A )  x.  B ) )
3310, 10, 11mul32d 9112 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3432, 33eqtrd 2390 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3534oveq2d 5961 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
3617a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
3736, 18, 10mulassd 8948 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  A
)  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
3835, 37eqtr4d 2393 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  A ) )
3929, 38oveq12d 5963 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
4025, 39eqtr4d 2393 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) ) )
4123, 10mulcomd 8946 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  A
)  =  ( A  x.  ( B ^
2 ) ) )
4240, 41oveq12d 5963 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) )  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4314, 24, 423eqtrd 2394 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4413oveq1d 5960 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  B ) )
4521, 23, 11adddird 8950 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
46 sqval 11256 . . . . . . . . . . . . . 14  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
4711, 46syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
4847oveq2d 5961 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( A  x.  ( B  x.  B
) ) )
4910, 11, 11mulassd 8948 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  B
)  =  ( A  x.  ( B  x.  B ) ) )
5048, 49eqtr4d 2393 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( ( A  x.  B )  x.  B ) )
5150oveq2d 5961 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5236, 18, 11mulassd 8948 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  B
)  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5351, 52eqtr4d 2393 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  B ) )
5453oveq2d 5961 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5516, 20, 11adddird 8950 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5654, 55eqtr4d 2393 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B ) )
571oveq2i 5956 . . . . . . . 8  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
58 expp1 11203 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
5911, 4, 58sylancl 643 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
6057, 59syl5eq 2402 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  =  ( ( B ^ 2 )  x.  B ) )
6156, 60oveq12d 5963 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
6216, 11mulcld 8945 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
6310, 23mulcld 8945 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
64 mulcl 8911 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
6517, 63, 64sylancr 644 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
66 3nn0 10075 . . . . . . . 8  |-  3  e.  NN0
67 expcl 11214 . . . . . . . 8  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
6811, 66, 67sylancl 643 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
6962, 65, 68addassd 8947 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7061, 69eqtr3d 2392 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7144, 45, 703eqtrd 2394 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7243, 71oveq12d 5963 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) )  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^
2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
73 expcl 11214 . . . . . 6  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
7410, 66, 73sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
75 mulcl 8911 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 2  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
7617, 62, 75sylancr 644 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
7774, 76addcld 8944 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
7865, 68addcld 8944 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
7977, 63, 62, 78add4d 9125 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( A  x.  ( B ^ 2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8012, 72, 793eqtrd 2394 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  +  ( ( A  x.  ( B ^
2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8174, 76, 62addassd 8947 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
821oveq1i 5955 . . . . . . 7  |-  ( 3  x.  ( ( A ^ 2 )  x.  B ) )  =  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )
83 ax-1cn 8885 . . . . . . . . 9  |-  1  e.  CC
8483a1i 10 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
8536, 84, 62adddird 8950 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8682, 85syl5eq 2402 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8762mulid2d 8943 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( A ^ 2 )  x.  B ) )
8887oveq2d 5961 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( A ^
2 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
8986, 88eqtrd 2390 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
9089oveq2d 5961 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
9181, 90eqtr4d 2393 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) ) )
92 2p1e3 9939 . . . . . . . . 9  |-  ( 2  +  1 )  =  3
9317, 83, 92addcomli 9094 . . . . . . . 8  |-  ( 1  +  2 )  =  3
9493oveq1i 5955 . . . . . . 7  |-  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 3  x.  ( A  x.  ( B ^
2 ) ) )
9584, 36, 63adddird 8950 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9694, 95syl5eqr 2404 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9763mulid2d 8943 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( A  x.  ( B ^
2 ) ) )
9897oveq1d 5960 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9996, 98eqtrd 2390 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
10099oveq1d 5960 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) ) )
10163, 65, 68addassd 8947 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
102100, 101eqtr2d 2391 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )
10391, 102oveq12d 5963 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
1047, 80, 1033eqtrd 2394 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710  (class class class)co 5945   CCcc 8825   1c1 8828    + caddc 8830    x. cmul 8832   2c2 9885   3c3 9886   NN0cn0 10057   ^cexp 11197
This theorem is referenced by:  dcubic1lem  20250  mcubic  20254  binom4  20257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-seq 11139  df-exp 11198
  Copyright terms: Public domain W3C validator