MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom4 Unicode version

Theorem binom4 20146
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 12288, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )

Proof of Theorem binom4
StepHypRef Expression
1 df-4 9806 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5869 . . 3  |-  ( ( A  +  B ) ^ 4 )  =  ( ( A  +  B ) ^ (
3  +  1 ) )
3 addcl 8819 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 3nn0 9983 . . . 4  |-  3  e.  NN0
5 expp1 11110 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
72, 6syl5eq 2327 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
8 binom3 11222 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
98oveq1d 5873 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
3 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  ( A  +  B ) ) )
10 simpl 443 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 expcl 11121 . . . . . . 7  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
1210, 4, 11sylancl 643 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
13 3cn 9818 . . . . . . 7  |-  3  e.  CC
1410sqcld 11243 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
15 simpr 447 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1614, 15mulcld 8855 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
17 mulcl 8821 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
1813, 16, 17sylancr 644 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
1912, 18addcld 8854 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
2015sqcld 11243 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2110, 20mulcld 8855 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
22 mulcl 8821 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
2313, 21, 22sylancr 644 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
24 expcl 11121 . . . . . . 7  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
2515, 4, 24sylancl 643 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
2623, 25addcld 8854 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
2719, 26addcld 8854 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  e.  CC )
2827, 10, 15adddid 8859 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  A )  +  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B ) ) )
2919, 26, 10adddird 8860 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A )  =  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  x.  A )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A ) ) )
3012, 18, 10adddird 8860 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  A
)  =  ( ( ( A ^ 3 )  x.  A )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  B ) )  x.  A ) ) )
311oveq2i 5869 . . . . . . . . 9  |-  ( A ^ 4 )  =  ( A ^ (
3  +  1 ) )
32 expp1 11110 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3310, 4, 32sylancl 643 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3431, 33syl5req 2328 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  A
)  =  ( A ^ 4 ) )
3513a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  3  e.  CC )
3635, 16, 10mulassd 8858 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  A ) ) )
3714, 15, 10mul32d 9022 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  x.  B ) )
38 df-3 9805 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
3938oveq2i 5869 . . . . . . . . . . . . 13  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
40 2nn0 9982 . . . . . . . . . . . . . 14  |-  2  e.  NN0
41 expp1 11110 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4210, 40, 41sylancl 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4339, 42syl5req 2328 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  A
)  =  ( A ^ 3 ) )
4443oveq1d 5873 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  A )  x.  B
)  =  ( ( A ^ 3 )  x.  B ) )
4537, 44eqtrd 2315 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( A ^ 3 )  x.  B ) )
4645oveq2d 5874 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  A ) )  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4736, 46eqtrd 2315 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4834, 47oveq12d 5876 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  A )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  A ) )  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4930, 48eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  A
)  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
5023, 25, 10adddird 8860 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A )  =  ( ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  x.  A )  +  ( ( B ^
3 )  x.  A
) ) )
5135, 21, 10mulassd 8858 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  A ) ) )
5210, 20, 10mul32d 9022 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5310sqvald 11242 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
5453oveq1d 5873 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5552, 54eqtr4d 2318 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )
5655oveq2d 5874 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  A ) )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5751, 56eqtrd 2315 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5825, 10mulcomd 8856 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  A
)  =  ( A  x.  ( B ^
3 ) ) )
5957, 58oveq12d 5876 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A
)  +  ( ( B ^ 3 )  x.  A ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
6050, 59eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
6149, 60oveq12d 5876 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  A )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A ) )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
6229, 61eqtrd 2315 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
6319, 26, 15adddird 8860 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) ) )
6412, 18, 15adddird 8860 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  B
)  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  B ) )  x.  B ) ) )
6535, 16, 15mulassd 8858 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  B ) ) )
6614, 15, 15mulassd 8858 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B  x.  B ) ) )
6715sqvald 11242 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
6867oveq2d 5874 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( B  x.  B
) ) )
6966, 68eqtr4d 2318 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )
7069oveq2d 5874 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  B ) )  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
7165, 70eqtrd 2315 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
7271oveq2d 5874 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  B ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
7364, 72eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  B
)  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
7423, 25, 15adddird 8860 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B )  =  ( ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  x.  B )  +  ( ( B ^
3 )  x.  B
) ) )
7535, 21, 15mulassd 8858 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  B ) ) )
7610, 20, 15mulassd 8858 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( ( B ^
2 )  x.  B
) ) )
7738oveq2i 5869 . . . . . . . . . . . . 13  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
78 expp1 11110 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7915, 40, 78sylancl 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
8077, 79syl5req 2328 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  B
)  =  ( B ^ 3 ) )
8180oveq2d 5874 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
( B ^ 2 )  x.  B ) )  =  ( A  x.  ( B ^
3 ) ) )
8276, 81eqtrd 2315 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( B ^ 3 ) ) )
8382oveq2d 5874 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  B ) )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
8475, 83eqtrd 2315 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
851oveq2i 5869 . . . . . . . . 9  |-  ( B ^ 4 )  =  ( B ^ (
3  +  1 ) )
86 expp1 11110 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8715, 4, 86sylancl 643 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8885, 87syl5req 2328 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  B
)  =  ( B ^ 4 ) )
8984, 88oveq12d 5876 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B
)  +  ( ( B ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
9074, 89eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
9173, 90oveq12d 5876 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) )  =  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
9212, 15mulcld 8855 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  B
)  e.  CC )
9314, 20mulcld 8855 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )
94 mulcl 8821 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9513, 93, 94sylancr 644 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9610, 25mulcld 8855 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 3 ) )  e.  CC )
97 mulcl 8821 . . . . . . . 8  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 3 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
9813, 96, 97sylancr 644 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
99 4nn0 9984 . . . . . . . 8  |-  4  e.  NN0
100 expcl 11121 . . . . . . . 8  |-  ( ( B  e.  CC  /\  4  e.  NN0 )  -> 
( B ^ 4 )  e.  CC )
10115, 99, 100sylancl 643 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 4 )  e.  CC )
10298, 101addcld 8854 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  e.  CC )
10392, 95, 102addassd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
10463, 91, 1033eqtrd 2319 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
10562, 104oveq12d 5876 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A
)  +  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  B ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )  +  ( ( ( A ^
3 )  x.  B
)  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
106 expcl 11121 . . . . . . 7  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
10710, 99, 106sylancl 643 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 4 )  e.  CC )
108 mulcl 8821 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
3 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
3 )  x.  B
) )  e.  CC )
10913, 92, 108sylancr 644 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 3 )  x.  B ) )  e.  CC )
110107, 109addcld 8854 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  e.  CC )
11195, 96addcld 8854 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  e.  CC )
11295, 102addcld 8854 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  e.  CC )
113110, 111, 92, 112add4d 9035 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
114107, 109, 92addassd 8857 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
1151oveq1i 5868 . . . . . . . . 9  |-  ( 4  x.  ( ( A ^ 3 )  x.  B ) )  =  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )
116 ax-1cn 8795 . . . . . . . . . . 11  |-  1  e.  CC
117116a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
11835, 117, 92adddird 8860 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
119115, 118syl5eq 2327 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
12092mulid2d 8853 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( A ^ 3 )  x.  B ) )
121120oveq2d 5874 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
3 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
122119, 121eqtrd 2315 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
123122oveq2d 5874 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
124114, 123eqtr4d 2318 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) ) )
12595, 96, 95, 102add4d 9035 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
126 3p3e6 9856 . . . . . . . . 9  |-  ( 3  +  3 )  =  6
127126oveq1i 5868 . . . . . . . 8  |-  ( ( 3  +  3 )  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )
12835, 35, 93adddird 8860 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  3 )  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
129127, 128syl5eqr 2329 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
130 3p1e4 9848 . . . . . . . . . . . . 13  |-  ( 3  +  1 )  =  4
13113, 116, 130addcomli 9004 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  4
132131oveq1i 5868 . . . . . . . . . . 11  |-  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( 4  x.  ( A  x.  ( B ^
3 ) ) )
133117, 35, 96adddird 8860 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
134132, 133syl5eqr 2329 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
13596mulid2d 8853 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( A  x.  ( B ^
3 ) ) )
136135oveq1d 5873 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
137134, 136eqtrd 2315 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
138137oveq1d 5873 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) ) )
13996, 98, 101addassd 8857 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
140138, 139eqtrd 2315 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^
3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
141129, 140oveq12d 5876 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
142125, 141eqtr4d 2318 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) )
143124, 142oveq12d 5876 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
144113, 143eqtrd 2315 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
14528, 105, 1443eqtrd 2319 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
1467, 9, 1453eqtrd 2319 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740    x. cmul 8742   2c2 9795   3c3 9796   4c4 9797   6c6 9799   NN0cn0 9965   ^cexp 11104
This theorem is referenced by:  quart1  20152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator