MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem2 Structured version   Unicode version

Theorem birthdaylem2 20781
Description: For general  N and  K, count the fraction of injective functions from  1 ... K to  1 ... N. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
birthday.s  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
birthday.t  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
Assertion
Ref Expression
birthdaylem2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  T )  /  ( # `
 S ) )  =  ( exp `  sum_ k  e.  ( 0 ... ( K  - 
1 ) ) ( log `  ( 1  -  ( k  /  N ) ) ) ) )
Distinct variable groups:    f, k, K    f, N, k
Allowed substitution hints:    S( f, k)    T( f, k)

Proof of Theorem birthdaylem2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . 7  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
21fveq2i 5723 . . . . . 6  |-  ( # `  T )  =  (
# `  { f  |  f : ( 1 ... K )
-1-1-> ( 1 ... N
) } )
3 fzfi 11301 . . . . . . 7  |-  ( 1 ... K )  e. 
Fin
4 fzfi 11301 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
5 hashf1 11696 . . . . . . 7  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( # `  {
f  |  f : ( 1 ... K
) -1-1-> ( 1 ... N ) } )  =  ( ( ! `
 ( # `  (
1 ... K ) ) )  x.  ( (
# `  ( 1 ... N ) )  _C  ( # `  (
1 ... K ) ) ) ) )
63, 4, 5mp2an 654 . . . . . 6  |-  ( # `  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) } )  =  ( ( ! `  ( # `  ( 1 ... K
) ) )  x.  ( ( # `  (
1 ... N ) )  _C  ( # `  (
1 ... K ) ) ) )
72, 6eqtri 2455 . . . . 5  |-  ( # `  T )  =  ( ( ! `  ( # `
 ( 1 ... K ) ) )  x.  ( ( # `  ( 1 ... N
) )  _C  ( # `
 ( 1 ... K ) ) ) )
8 elfznn0 11073 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
98adantl 453 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
10 hashfz1 11620 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( # `  ( 1 ... K
) )  =  K )
119, 10syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  (
1 ... K ) )  =  K )
1211fveq2d 5724 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( # `  ( 1 ... K ) ) )  =  ( ! `
 K ) )
13 nnnn0 10218 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
14 hashfz1 11620 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
1513, 14syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... N ) )  =  N )
1615adantr 452 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  (
1 ... N ) )  =  N )
1716, 11oveq12d 6091 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  ( 1 ... N
) )  _C  ( # `
 ( 1 ... K ) ) )  =  ( N  _C  K ) )
1812, 17oveq12d 6091 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 ( # `  (
1 ... K ) ) )  x.  ( (
# `  ( 1 ... N ) )  _C  ( # `  (
1 ... K ) ) ) )  =  ( ( ! `  K
)  x.  ( N  _C  K ) ) )
197, 18syl5eq 2479 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  T
)  =  ( ( ! `  K )  x.  ( N  _C  K ) ) )
2013adantr 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
21 faccl 11566 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2220, 21syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
2322nncnd 10006 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  CC )
24 fznn0sub 11075 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
2524adantl 453 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
26 faccl 11566 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
2725, 26syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
2827nncnd 10006 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  CC )
2927nnne0d 10034 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  =/=  0
)
3023, 28, 29divcld 9780 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 N )  / 
( ! `  ( N  -  K )
) )  e.  CC )
31 faccl 11566 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
329, 31syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
3332nncnd 10006 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  CC )
3432nnne0d 10034 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  =/=  0
)
3530, 33, 34divcan2d 9782 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 K )  x.  ( ( ( ! `
 N )  / 
( ! `  ( N  -  K )
) )  /  ( ! `  K )
) )  =  ( ( ! `  N
)  /  ( ! `
 ( N  -  K ) ) ) )
36 bcval2 11586 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
3736adantl 453 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
3823, 28, 33, 29, 34divdiv1d 9811 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ( ! `  N )  /  ( ! `  ( N  -  K
) ) )  / 
( ! `  K
) )  =  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
3937, 38eqtr4d 2470 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( ( ( ! `  N )  /  ( ! `  ( N  -  K ) ) )  /  ( ! `  K ) ) )
4039oveq2d 6089 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 K )  x.  ( N  _C  K
) )  =  ( ( ! `  K
)  x.  ( ( ( ! `  N
)  /  ( ! `
 ( N  -  K ) ) )  /  ( ! `  K ) ) ) )
41 fzfid 11302 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1 ... N )  e.  Fin )
42 elfznn 11070 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  n  e.  NN )
4342adantl 453 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( 1 ... N ) )  ->  n  e.  NN )
44 nnrp 10611 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  RR+ )
4544relogcld 20508 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( log `  n )  e.  RR )
4645recnd 9104 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( log `  n )  e.  CC )
4743, 46syl 16 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( 1 ... N ) )  ->  ( log `  n )  e.  CC )
4841, 47fsumcl 12517 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( 1 ... N ) ( log `  n
)  e.  CC )
49 fzfid 11302 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1 ... ( N  -  K
) )  e.  Fin )
50 elfznn 11070 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( N  -  K
) )  ->  n  e.  NN )
5150adantl 453 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( 1 ... ( N  -  K ) ) )  ->  n  e.  NN )
5251, 46syl 16 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( 1 ... ( N  -  K ) ) )  ->  ( log `  n )  e.  CC )
5349, 52fsumcl 12517 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
)  e.  CC )
54 efsub 12691 . . . . . . 7  |-  ( (
sum_ n  e.  (
1 ... N ) ( log `  n )  e.  CC  /\  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n )  e.  CC )  ->  ( exp `  ( sum_ n  e.  ( 1 ... N ) ( log `  n )  -  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
) ) )  =  ( ( exp `  sum_ n  e.  ( 1 ... N ) ( log `  n ) )  / 
( exp `  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) ) )
5548, 53, 54syl2anc 643 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( sum_ n  e.  ( 1 ... N ) ( log `  n )  -  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
) ) )  =  ( ( exp `  sum_ n  e.  ( 1 ... N ) ( log `  n ) )  / 
( exp `  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) ) )
5625nn0red 10265 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  RR )
5756ltp1d 9931 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  <  (
( N  -  K
)  +  1 ) )
58 fzdisj 11068 . . . . . . . . . . 11  |-  ( ( N  -  K )  <  ( ( N  -  K )  +  1 )  ->  (
( 1 ... ( N  -  K )
)  i^i  ( (
( N  -  K
)  +  1 ) ... N ) )  =  (/) )
5957, 58syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( 1 ... ( N  -  K ) )  i^i  ( ( ( N  -  K )  +  1 ) ... N
) )  =  (/) )
60 fznn0sub2 11076 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  ( 0 ... N
) )
6160adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ( 0 ... N ) )
62 elfzle2 11051 . . . . . . . . . . . . . . 15  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( N  -  K )  <_  N )
6361, 62syl 16 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  <_  N
)
6463adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( N  -  K )  <_  N
)
65 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( N  -  K )  e.  NN )
66 nnuz 10511 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
6765, 66syl6eleq 2525 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( N  -  K )  e.  (
ZZ>= `  1 ) )
68 nnz 10293 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  ZZ )
6968ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  N  e.  ZZ )
70 elfz5 11041 . . . . . . . . . . . . . 14  |-  ( ( ( N  -  K
)  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( N  -  K
)  e.  ( 1 ... N )  <->  ( N  -  K )  <_  N
) )
7167, 69, 70syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( ( N  -  K )  e.  ( 1 ... N
)  <->  ( N  -  K )  <_  N
) )
7264, 71mpbird 224 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( N  -  K )  e.  ( 1 ... N ) )
73 fzsplit 11067 . . . . . . . . . . . 12  |-  ( ( N  -  K )  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... ( N  -  K
) )  u.  (
( ( N  -  K )  +  1 ) ... N ) ) )
7472, 73syl 16 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  e.  NN )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  K )
)  u.  ( ( ( N  -  K
)  +  1 ) ... N ) ) )
75 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( N  -  K )  =  0 )
7675oveq2d 6089 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( 1 ... ( N  -  K ) )  =  ( 1 ... 0
) )
77 fz10 11065 . . . . . . . . . . . . . 14  |-  ( 1 ... 0 )  =  (/)
7876, 77syl6eq 2483 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( 1 ... ( N  -  K ) )  =  (/) )
7978uneq1d 3492 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( (
1 ... ( N  -  K ) )  u.  ( ( ( N  -  K )  +  1 ) ... N
) )  =  (
(/)  u.  ( (
( N  -  K
)  +  1 ) ... N ) ) )
80 uncom 3483 . . . . . . . . . . . . . 14  |-  ( (/)  u.  ( ( ( N  -  K )  +  1 ) ... N
) )  =  ( ( ( ( N  -  K )  +  1 ) ... N
)  u.  (/) )
81 un0 3644 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  -  K )  +  1 ) ... N )  u.  (/) )  =  ( ( ( N  -  K )  +  1 ) ... N )
8280, 81eqtri 2455 . . . . . . . . . . . . 13  |-  ( (/)  u.  ( ( ( N  -  K )  +  1 ) ... N
) )  =  ( ( ( N  -  K )  +  1 ) ... N )
8375oveq1d 6088 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( ( N  -  K )  +  1 )  =  ( 0  +  1 ) )
84 1e0p1 10400 . . . . . . . . . . . . . . 15  |-  1  =  ( 0  +  1 )
8583, 84syl6eqr 2485 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( ( N  -  K )  +  1 )  =  1 )
8685oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( (
( N  -  K
)  +  1 ) ... N )  =  ( 1 ... N
) )
8782, 86syl5eq 2479 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( (/)  u.  (
( ( N  -  K )  +  1 ) ... N ) )  =  ( 1 ... N ) )
8879, 87eqtr2d 2468 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  ( N  -  K )  =  0 )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  K
) )  u.  (
( ( N  -  K )  +  1 ) ... N ) ) )
89 elnn0 10213 . . . . . . . . . . . 12  |-  ( ( N  -  K )  e.  NN0  <->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
9025, 89sylib 189 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
9174, 88, 90mpjaodan 762 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  K )
)  u.  ( ( ( N  -  K
)  +  1 ) ... N ) ) )
9259, 91, 41, 47fsumsplit 12523 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( 1 ... N ) ( log `  n
)  =  ( sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n )  +  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) ) )
9392oveq1d 6088 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( sum_ n  e.  ( 1 ... N
) ( log `  n
)  -  sum_ n  e.  ( 1 ... ( N  -  K )
) ( log `  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
)  +  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  n
) )  -  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) )
94 fzfid 11302 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ( N  -  K )  +  1 ) ... N )  e.  Fin )
95 nn0p1nn 10249 . . . . . . . . . . . . 13  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
9625, 95syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  e.  NN )
97 elfzuz 11045 . . . . . . . . . . . 12  |-  ( n  e.  ( ( ( N  -  K )  +  1 ) ... N )  ->  n  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
9866uztrn2 10493 . . . . . . . . . . . 12  |-  ( ( ( ( N  -  K )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  n  e.  NN )
9996, 97, 98syl2an 464 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  n  e.  NN )
10099, 46syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( log `  n )  e.  CC )
10194, 100fsumcl 12517 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  e.  CC )
10253, 101pncan2d 9403 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n )  +  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) )  -  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n ) )  =  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  n
) )
10393, 102eqtr2d 2468 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  =  ( sum_ n  e.  ( 1 ... N ) ( log `  n )  -  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) )
104103fveq2d 5724 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) )  =  ( exp `  ( sum_ n  e.  ( 1 ... N ) ( log `  n )  -  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
) ) ) )
10522nnne0d 10034 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =/=  0
)
106 eflog 20464 . . . . . . . . 9  |-  ( ( ( ! `  N
)  e.  CC  /\  ( ! `  N )  =/=  0 )  -> 
( exp `  ( log `  ( ! `  N ) ) )  =  ( ! `  N ) )
10723, 105, 106syl2anc 643 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( log `  ( ! `  N ) ) )  =  ( ! `  N ) )
108 logfac 20485 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( log `  ( ! `  N
) )  =  sum_ n  e.  ( 1 ... N ) ( log `  n ) )
10920, 108syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( log `  ( ! `  N )
)  =  sum_ n  e.  ( 1 ... N
) ( log `  n
) )
110109fveq2d 5724 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( log `  ( ! `  N ) ) )  =  ( exp `  sum_ n  e.  ( 1 ... N ) ( log `  n ) ) )
111107, 110eqtr3d 2469 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( exp `  sum_ n  e.  ( 1 ... N
) ( log `  n
) ) )
112 eflog 20464 . . . . . . . . 9  |-  ( ( ( ! `  ( N  -  K )
)  e.  CC  /\  ( ! `  ( N  -  K ) )  =/=  0 )  -> 
( exp `  ( log `  ( ! `  ( N  -  K
) ) ) )  =  ( ! `  ( N  -  K
) ) )
11328, 29, 112syl2anc 643 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( log `  ( ! `  ( N  -  K
) ) ) )  =  ( ! `  ( N  -  K
) ) )
114 logfac 20485 . . . . . . . . . 10  |-  ( ( N  -  K )  e.  NN0  ->  ( log `  ( ! `  ( N  -  K )
) )  =  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) )
11525, 114syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( log `  ( ! `  ( N  -  K ) ) )  =  sum_ n  e.  ( 1 ... ( N  -  K ) ) ( log `  n
) )
116115fveq2d 5724 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( log `  ( ! `  ( N  -  K
) ) ) )  =  ( exp `  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) )
117113, 116eqtr3d 2469 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  =  ( exp `  sum_ n  e.  ( 1 ... ( N  -  K )
) ( log `  n
) ) )
118111, 117oveq12d 6091 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 N )  / 
( ! `  ( N  -  K )
) )  =  ( ( exp `  sum_ n  e.  ( 1 ... N ) ( log `  n ) )  / 
( exp `  sum_ n  e.  ( 1 ... ( N  -  K
) ) ( log `  n ) ) ) )
11955, 104, 1183eqtr4d 2477 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) )  =  ( ( ! `  N )  /  ( ! `  ( N  -  K ) ) ) )
12035, 40, 1193eqtr4d 2477 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `
 K )  x.  ( N  _C  K
) )  =  ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  n
) ) )
12119, 120eqtrd 2467 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  T
)  =  ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
) ) )
122 birthday.s . . . . . . . 8  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
123 mapvalg 7020 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... K
)  e.  Fin )  ->  ( ( 1 ... N )  ^m  (
1 ... K ) )  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) } )
1244, 3, 123mp2an 654 . . . . . . . 8  |-  ( ( 1 ... N )  ^m  ( 1 ... K ) )  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
125122, 124eqtr4i 2458 . . . . . . 7  |-  S  =  ( ( 1 ... N )  ^m  (
1 ... K ) )
126125fveq2i 5723 . . . . . 6  |-  ( # `  S )  =  (
# `  ( (
1 ... N )  ^m  ( 1 ... K
) ) )
127 hashmap 11688 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... K
)  e.  Fin )  ->  ( # `  (
( 1 ... N
)  ^m  ( 1 ... K ) ) )  =  ( (
# `  ( 1 ... N ) ) ^
( # `  ( 1 ... K ) ) ) )
1284, 3, 127mp2an 654 . . . . . 6  |-  ( # `  ( ( 1 ... N )  ^m  (
1 ... K ) ) )  =  ( (
# `  ( 1 ... N ) ) ^
( # `  ( 1 ... K ) ) )
129126, 128eqtri 2455 . . . . 5  |-  ( # `  S )  =  ( ( # `  (
1 ... N ) ) ^ ( # `  (
1 ... K ) ) )
13016, 11oveq12d 6091 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  ( 1 ... N
) ) ^ ( # `
 ( 1 ... K ) ) )  =  ( N ^ K ) )
131129, 130syl5eq 2479 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  S
)  =  ( N ^ K ) )
132 nncn 9998 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  CC )
133132adantr 452 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  N  e.  CC )
134 nnne0 10022 . . . . . 6  |-  ( N  e.  NN  ->  N  =/=  0 )
135134adantr 452 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  N  =/=  0
)
136 elfzelz 11049 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
137136adantl 453 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
138 explog 20478 . . . . 5  |-  ( ( N  e.  CC  /\  N  =/=  0  /\  K  e.  ZZ )  ->  ( N ^ K )  =  ( exp `  ( K  x.  ( log `  N ) ) ) )
139133, 135, 137, 138syl3anc 1184 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N ^ K )  =  ( exp `  ( K  x.  ( log `  N
) ) ) )
140131, 139eqtrd 2467 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  S
)  =  ( exp `  ( K  x.  ( log `  N ) ) ) )
141121, 140oveq12d 6091 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  T )  /  ( # `
 S ) )  =  ( ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
) )  /  ( exp `  ( K  x.  ( log `  N ) ) ) ) )
1429nn0cnd 10266 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  K  e.  CC )
143 nnrp 10611 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR+ )
144143adantr 452 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  N  e.  RR+ )
145144relogcld 20508 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( log `  N
)  e.  RR )
146145recnd 9104 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( log `  N
)  e.  CC )
147142, 146mulcld 9098 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( K  x.  ( log `  N ) )  e.  CC )
148 efsub 12691 . . 3  |-  ( (
sum_ n  e.  (
( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  e.  CC  /\  ( K  x.  ( log `  N ) )  e.  CC )  -> 
( exp `  ( sum_ n  e.  ( ( ( N  -  K
)  +  1 ) ... N ) ( log `  n )  -  ( K  x.  ( log `  N ) ) ) )  =  ( ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) )  / 
( exp `  ( K  x.  ( log `  N ) ) ) ) )
149101, 147, 148syl2anc 643 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( sum_ n  e.  ( ( ( N  -  K
)  +  1 ) ... N ) ( log `  n )  -  ( K  x.  ( log `  N ) ) ) )  =  ( ( exp `  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n ) )  / 
( exp `  ( K  x.  ( log `  N ) ) ) ) )
150 relogdiv 20477 . . . . . . 7  |-  ( ( n  e.  RR+  /\  N  e.  RR+ )  ->  ( log `  ( n  /  N ) )  =  ( ( log `  n
)  -  ( log `  N ) ) )
15144, 144, 150syl2anr 465 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  NN )  ->  ( log `  (
n  /  N ) )  =  ( ( log `  n )  -  ( log `  N
) ) )
15299, 151syldan 457 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( log `  ( n  /  N
) )  =  ( ( log `  n
)  -  ( log `  N ) ) )
153152sumeq2dv 12487 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  (
n  /  N ) )  =  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( ( log `  n )  -  ( log `  N ) ) )
15468adantr 452 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ZZ )
15525nn0zd 10363 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ZZ )
156155peano2zd 10368 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  e.  ZZ )
15799, 44syl 16 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  n  e.  RR+ )
158144adantr 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  N  e.  RR+ )
159157, 158rpdivcld 10655 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( n  /  N )  e.  RR+ )
160159relogcld 20508 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( log `  ( n  /  N
) )  e.  RR )
161160recnd 9104 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( log `  ( n  /  N
) )  e.  CC )
162 oveq1 6080 . . . . . . 7  |-  ( n  =  ( N  -  k )  ->  (
n  /  N )  =  ( ( N  -  k )  /  N ) )
163162fveq2d 5724 . . . . . 6  |-  ( n  =  ( N  -  k )  ->  ( log `  ( n  /  N ) )  =  ( log `  (
( N  -  k
)  /  N ) ) )
164154, 156, 154, 161, 163fsumrev 12552 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  (
n  /  N ) )  =  sum_ k  e.  ( ( N  -  N ) ... ( N  -  ( ( N  -  K )  +  1 ) ) ) ( log `  (
( N  -  k
)  /  N ) ) )
165133subidd 9389 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  N )  =  0 )
166 ax-1cn 9038 . . . . . . . . . . 11  |-  1  e.  CC
167166a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  1  e.  CC )
168133, 142, 167subsubd 9429 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  ( K  -  1
) )  =  ( ( N  -  K
)  +  1 ) )
169168oveq2d 6089 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  ( N  -  ( K  -  1 ) ) )  =  ( N  -  ( ( N  -  K )  +  1 ) ) )
170 subcl 9295 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( K  -  1 )  e.  CC )
171142, 166, 170sylancl 644 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( K  - 
1 )  e.  CC )
172133, 171nncand 9406 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  ( N  -  ( K  -  1 ) ) )  =  ( K  -  1 ) )
173169, 172eqtr3d 2469 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  ( ( N  -  K )  +  1 ) )  =  ( K  -  1 ) )
174165, 173oveq12d 6091 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  N ) ... ( N  -  (
( N  -  K
)  +  1 ) ) )  =  ( 0 ... ( K  -  1 ) ) )
175133adantr 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  CC )
176 elfznn0 11073 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( K  -  1 ) )  ->  k  e.  NN0 )
177176adantl 453 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  e.  NN0 )
178177nn0cnd 10266 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  e.  CC )
179135adantr 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  =/=  0 )
180175, 178, 175, 179divsubdird 9819 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( ( N  -  k )  /  N )  =  ( ( N  /  N
)  -  ( k  /  N ) ) )
181175, 179dividd 9778 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( N  /  N )  =  1 )
182181oveq1d 6088 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( ( N  /  N )  -  ( k  /  N
) )  =  ( 1  -  ( k  /  N ) ) )
183180, 182eqtrd 2467 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( ( N  -  k )  /  N )  =  ( 1  -  ( k  /  N ) ) )
184183fveq2d 5724 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( log `  ( ( N  -  k )  /  N
) )  =  ( log `  ( 1  -  ( k  /  N ) ) ) )
185174, 184sumeq12rdv 12491 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ k  e.  ( ( N  -  N
) ... ( N  -  ( ( N  -  K )  +  1 ) ) ) ( log `  ( ( N  -  k )  /  N ) )  =  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )
186164, 185eqtrd 2467 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  (
n  /  N ) )  =  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )
187146adantr 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  /\  n  e.  ( ( ( N  -  K )  +  1 ) ... N ) )  ->  ( log `  N )  e.  CC )
18894, 100, 187fsumsub 12561 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( ( log `  n
)  -  ( log `  N ) )  =  ( sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  -  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  N
) ) )
189 fsumconst 12563 . . . . . . . 8  |-  ( ( ( ( ( N  -  K )  +  1 ) ... N
)  e.  Fin  /\  ( log `  N )  e.  CC )  ->  sum_ n  e.  ( ( ( N  -  K
)  +  1 ) ... N ) ( log `  N )  =  ( ( # `  ( ( ( N  -  K )  +  1 ) ... N
) )  x.  ( log `  N ) ) )
19094, 146, 189syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  N
)  =  ( (
# `  ( (
( N  -  K
)  +  1 ) ... N ) )  x.  ( log `  N
) ) )
191 1z 10301 . . . . . . . . . . . . 13  |-  1  e.  ZZ
192191a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  1  e.  ZZ )
193 fzen 11062 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  K  e.  ZZ  /\  ( N  -  K )  e.  ZZ )  ->  (
1 ... K )  ~~  ( ( 1  +  ( N  -  K
) ) ... ( K  +  ( N  -  K ) ) ) )
194192, 137, 155, 193syl3anc 1184 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1 ... K )  ~~  (
( 1  +  ( N  -  K ) ) ... ( K  +  ( N  -  K ) ) ) )
19525nn0cnd 10266 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  CC )
196 addcom 9242 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( N  -  K
)  e.  CC )  ->  ( 1  +  ( N  -  K
) )  =  ( ( N  -  K
)  +  1 ) )
197166, 195, 196sylancr 645 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1  +  ( N  -  K
) )  =  ( ( N  -  K
)  +  1 ) )
198142, 133pncan3d 9404 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( K  +  ( N  -  K
) )  =  N )
199197, 198oveq12d 6091 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( 1  +  ( N  -  K ) ) ... ( K  +  ( N  -  K ) ) )  =  ( ( ( N  -  K )  +  1 ) ... N ) )
200194, 199breqtrd 4228 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( 1 ... K )  ~~  (
( ( N  -  K )  +  1 ) ... N ) )
201 hasheni 11622 . . . . . . . . . 10  |-  ( ( 1 ... K ) 
~~  ( ( ( N  -  K )  +  1 ) ... N )  ->  ( # `
 ( 1 ... K ) )  =  ( # `  (
( ( N  -  K )  +  1 ) ... N ) ) )
202200, 201syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  (
1 ... K ) )  =  ( # `  (
( ( N  -  K )  +  1 ) ... N ) ) )
203202, 11eqtr3d 2469 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( # `  (
( ( N  -  K )  +  1 ) ... N ) )  =  K )
204203oveq1d 6088 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  ( ( ( N  -  K )  +  1 ) ... N
) )  x.  ( log `  N ) )  =  ( K  x.  ( log `  N ) ) )
205190, 204eqtrd 2467 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  N
)  =  ( K  x.  ( log `  N
) ) )
206205oveq2d 6089 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  n
)  -  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  N
) )  =  (
sum_ n  e.  (
( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  -  ( K  x.  ( log `  N
) ) ) )
207188, 206eqtrd 2467 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( ( log `  n
)  -  ( log `  N ) )  =  ( sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N ) ( log `  n
)  -  ( K  x.  ( log `  N
) ) ) )
208153, 186, 2073eqtr3rd 2476 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( sum_ n  e.  ( ( ( N  -  K )  +  1 ) ... N
) ( log `  n
)  -  ( K  x.  ( log `  N
) ) )  = 
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )
209208fveq2d 5724 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( exp `  ( sum_ n  e.  ( ( ( N  -  K
)  +  1 ) ... N ) ( log `  n )  -  ( K  x.  ( log `  N ) ) ) )  =  ( exp `  sum_ k  e.  ( 0 ... ( K  - 
1 ) ) ( log `  ( 1  -  ( k  /  N ) ) ) ) )
210141, 149, 2093eqtr2d 2473 1  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  T )  /  ( # `
 S ) )  =  ( exp `  sum_ k  e.  ( 0 ... ( K  - 
1 ) ) ( log `  ( 1  -  ( k  /  N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598    u. cun 3310    i^i cin 3311   (/)c0 3620   class class class wbr 4204   -->wf 5442   -1-1->wf1 5443   ` cfv 5446  (class class class)co 6073    ^m cmap 7010    ~~ cen 7098   Fincfn 7101   CCcc 8978   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    < clt 9110    <_ cle 9111    - cmin 9281    / cdiv 9667   NNcn 9990   NN0cn0 10211   ZZcz 10272   ZZ>=cuz 10478   RR+crp 10602   ...cfz 11033   ^cexp 11372   !cfa 11556    _C cbc 11583   #chash 11608   sum_csu 12469   expce 12654   logclog 20442
This theorem is referenced by:  birthdaylem3  20782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-sum 12470  df-ef 12660  df-sin 12662  df-cos 12663  df-pi 12665  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-submnd 14729  df-mulg 14805  df-cntz 15106  df-cmn 15404  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-limc 19743  df-dv 19744  df-log 20444
  Copyright terms: Public domain W3C validator