MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Unicode version

Theorem bitru 1317
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <->  T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1312 . 2  |-  T.
31, 22th 230 1  |-  ( ph  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    T. wtru 1307
This theorem is referenced by:  truorfal  1331  falortru  1332  truimtru  1334  falimtru  1336  falimfal  1337  notfal  1339  trubitru  1340  falbifal  1343  0frgp  15104  astbstanbst  27980  dandysum2p2e4  28046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310
  Copyright terms: Public domain W3C validator