MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Unicode version

Theorem bitru 1332
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <->  T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1327 . 2  |-  T.
31, 22th 231 1  |-  ( ph  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    T. wtru 1322
This theorem is referenced by:  truorfal  1347  falortru  1348  truimtru  1350  falimtru  1352  falimfal  1353  notfal  1355  trubitru  1356  falbifal  1359  0frgp  15340  astbstanbst  27547  dandysum2p2e4  27613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1325
  Copyright terms: Public domain W3C validator