MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Unicode version

Theorem bitru 1335
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <->  T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1330 . 2  |-  T.
31, 22th 231 1  |-  ( ph  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    T. wtru 1325
This theorem is referenced by:  truorfal  1350  falortru  1351  truimtru  1353  falimtru  1355  falimfal  1356  notfal  1358  trubitru  1359  falbifal  1362  0frgp  15403  astbstanbst  27844  dandysum2p2e4  27910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1328
  Copyright terms: Public domain W3C validator