MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitscmp Structured version   Unicode version

Theorem bitscmp 12950
Description: The bit complement of  N is  -u N  -  1. (Thus, by bitsfi 12949, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp  |-  ( N  e.  ZZ  ->  ( NN0  \  (bits `  N
) )  =  (bits `  ( -u N  - 
1 ) ) )

Proof of Theorem bitscmp
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 bitsval2 12937 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( m  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
2 2z 10312 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 11 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
2  e.  ZZ )
4 simpl 444 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  ZZ )
54zred 10375 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  RR )
6 2nn 10133 . . . . . . . . . . . . 13  |-  2  e.  NN
76a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
2  e.  NN )
8 simpr 448 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  m  e.  NN0 )
97, 8nnexpcld 11544 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
105, 9nndivred 10048 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  /  (
2 ^ m ) )  e.  RR )
1110flcld 11207 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )
12 dvdsnegb 12867 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )  -> 
( 2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
133, 11, 12syl2anc 643 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
1413notbid 286 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  -.  2  ||  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) ) )
1511znegcld 10377 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )
16 oddm1even 12909 . . . . . . . . 9  |-  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ  ->  ( -.  2  ||  -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 ) ) )
1715, 16syl 16 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) ) )
18 flltp1 11209 . . . . . . . . . . . . . . . 16  |-  ( ( N  /  ( 2 ^ m ) )  e.  RR  ->  ( N  /  ( 2 ^ m ) )  < 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 ) )
1910, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  /  (
2 ^ m ) )  <  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 ) )
2011zred 10375 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  RR )
21 1re 9090 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
2221a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  RR )
2320, 22readdcld 9115 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  e.  RR )
2410, 23ltnegd 9604 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( N  / 
( 2 ^ m
) )  <  (
( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 )  <->  -u ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 )  <  -u ( N  /  (
2 ^ m ) ) ) )
2519, 24mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  <  -u ( N  /  ( 2 ^ m ) ) )
2620recnd 9114 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  CC )
2722recnd 9114 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  CC )
2826, 27negdi2d 9425 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  =  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) )
295recnd 9114 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  CC )
309nncnd 10016 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  CC )
319nnne0d 10044 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  =/=  0 )
3229, 30, 31divnegd 9803 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( N  /  (
2 ^ m ) )  =  ( -u N  /  ( 2 ^ m ) ) )
3325, 28, 323brtr3d 4241 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <  ( -u N  /  ( 2 ^ m ) ) )
34 1z 10311 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
3534a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  ZZ )
3615, 35zsubcld 10380 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  e.  ZZ )
3736zred 10375 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  e.  RR )
385renegcld 9464 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  e.  RR )
399nnrpd 10647 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  RR+ )
4037, 38, 39ltmuldivd 10691 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <  -u N  <->  (
-u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <  ( -u N  /  ( 2 ^ m ) ) ) )
4133, 40mpbird 224 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <  -u N
)
429nnzd 10374 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  ZZ )
4336, 42zmulcld 10381 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  e.  ZZ )
444znegcld 10377 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  e.  ZZ )
45 zltlem1 10328 . . . . . . . . . . . . 13  |-  ( ( ( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( ( (
-u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m ) )  <  -u N  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <_  ( -u N  -  1 ) ) )
4643, 44, 45syl2anc 643 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <  -u N  <->  ( ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <_  ( -u N  -  1 ) ) )
4741, 46mpbid 202 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <_  ( -u N  -  1 ) )
4838, 22resubcld 9465 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  -  1 )  e.  RR )
4937, 48, 39lemuldivd 10693 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <_  ( -u N  -  1 )  <-> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <_  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )
5047, 49mpbid 202 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <_  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )
51 flle 11208 . . . . . . . . . . . . . . . . 17  |-  ( ( N  /  ( 2 ^ m ) )  e.  RR  ->  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <_ 
( N  /  (
2 ^ m ) ) )
5210, 51syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  <_  ( N  / 
( 2 ^ m
) ) )
5320, 10lenegd 9605 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  <_  ( N  /  ( 2 ^ m ) )  <->  -u ( N  /  ( 2 ^ m ) )  <_  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
5452, 53mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( N  /  (
2 ^ m ) )  <_  -u ( |_
`  ( N  / 
( 2 ^ m
) ) ) )
5532, 54eqbrtrrd 4234 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  /  (
2 ^ m ) )  <_  -u ( |_
`  ( N  / 
( 2 ^ m
) ) ) )
5620renegcld 9464 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  RR )
5738, 56, 39ledivmuld 10697 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  /  ( 2 ^ m ) )  <_  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  -u N  <_  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
5855, 57mpbid 202 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  <_  ( (
2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) )
5942, 15zmulcld 10381 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( 2 ^ m )  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  e.  ZZ )
60 zlem1lt 10327 . . . . . . . . . . . . . 14  |-  ( (
-u N  e.  ZZ  /\  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  e.  ZZ )  -> 
( -u N  <_  (
( 2 ^ m
)  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6144, 59, 60syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  <_  (
( 2 ^ m
)  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6258, 61mpbid 202 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) )
6348, 56, 39ltdivmuld 10695 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u N  -  1 )  /  ( 2 ^ m ) )  <  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6462, 63mpbird 224 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  <  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )
6526negcld 9398 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  CC )
6665, 27npcand 9415 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  +  1 )  =  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )
6764, 66breqtrrd 4238 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  <  (
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  +  1 ) )
6848, 9nndivred 10048 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  e.  RR )
69 flbi 11223 . . . . . . . . . . 11  |-  ( ( ( ( -u N  -  1 )  / 
( 2 ^ m
) )  e.  RR  /\  ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  e.  ZZ )  ->  ( ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )  =  ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  <_ 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  /\  (
( -u N  -  1 )  /  ( 2 ^ m ) )  <  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  +  1 ) ) ) )
7068, 36, 69syl2anc 643 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( ( -u N  -  1 )  / 
( 2 ^ m
) ) )  =  ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  <_ 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  /\  (
( -u N  -  1 )  /  ( 2 ^ m ) )  <  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  +  1 ) ) ) )
7150, 67, 70mpbir2and 889 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) )  =  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) )
7271breq2d 4224 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2  ||  ( |_ `  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) ) )
7317, 72bitr4d 248 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
741, 14, 733bitrd 271 . . . . . 6  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( m  e.  (bits `  N )  <->  2  ||  ( |_ `  ( (
-u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
7574notbid 286 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  m  e.  (bits `  N )  <->  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
7675pm5.32da 623 . . . 4  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  m  e.  (bits `  N ) )  <->  ( m  e.  NN0  /\  -.  2  ||  ( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
77 znegcl 10313 . . . . . 6  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
7834a1i 11 . . . . . 6  |-  ( N  e.  ZZ  ->  1  e.  ZZ )
7977, 78zsubcld 10380 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u N  -  1 )  e.  ZZ )
8079biantrurd 495 . . . 4  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  2  ||  ( |_ `  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) ) )
8176, 80bitrd 245 . . 3  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  m  e.  (bits `  N ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) ) )
82 eldif 3330 . . 3  |-  ( m  e.  ( NN0  \  (bits `  N ) )  <->  ( m  e.  NN0  /\  -.  m  e.  (bits `  N )
) )
83 bitsval 12936 . . . 4  |-  ( m  e.  (bits `  ( -u N  -  1 ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
84 3anass 940 . . . 4  |-  ( ( ( -u N  - 
1 )  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
8583, 84bitri 241 . . 3  |-  ( m  e.  (bits `  ( -u N  -  1 ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
8681, 82, 853bitr4g 280 . 2  |-  ( N  e.  ZZ  ->  (
m  e.  ( NN0  \  (bits `  N )
)  <->  m  e.  (bits `  ( -u N  - 
1 ) ) ) )
8786eqrdv 2434 1  |-  ( N  e.  ZZ  ->  ( NN0  \  (bits `  N
) )  =  (bits `  ( -u N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    \ cdif 3317   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291   -ucneg 9292    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   |_cfl 11201   ^cexp 11382    || cdivides 12852  bitscbits 12931
This theorem is referenced by:  m1bits  12952  bitsf1  12958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fl 11202  df-seq 11324  df-exp 11383  df-dvds 12853  df-bits 12934
  Copyright terms: Public domain W3C validator