MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf Unicode version

Theorem bitsf 12898
Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsf  |- bits : ZZ --> ~P NN0

Proof of Theorem bitsf
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 12893 . 2  |- bits  =  ( n  e.  ZZ  |->  { k  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ k
) ) ) } )
2 ssrab2 3392 . . . 4  |-  { k  e.  NN0  |  -.  2  ||  ( |_ `  ( n  /  (
2 ^ k ) ) ) }  C_  NN0
3 nn0ex 10187 . . . . 5  |-  NN0  e.  _V
43elpw2 4328 . . . 4  |-  ( { k  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ k
) ) ) }  e.  ~P NN0  <->  { k  e.  NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ k ) ) ) }  C_  NN0 )
52, 4mpbir 201 . . 3  |-  { k  e.  NN0  |  -.  2  ||  ( |_ `  ( n  /  (
2 ^ k ) ) ) }  e.  ~P NN0
65a1i 11 . 2  |-  ( n  e.  ZZ  ->  { k  e.  NN0  |  -.  2  ||  ( |_ `  ( n  /  (
2 ^ k ) ) ) }  e.  ~P NN0 )
71, 6fmpti 5855 1  |- bits : ZZ --> ~P NN0
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1721   {crab 2674    C_ wss 3284   ~Pcpw 3763   class class class wbr 4176   -->wf 5413   ` cfv 5417  (class class class)co 6044    / cdiv 9637   2c2 10009   NN0cn0 10181   ZZcz 10242   |_cfl 11160   ^cexp 11341    || cdivides 12811  bitscbits 12890
This theorem is referenced by:  bitsf1ocnv  12915  bitsf1  12917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-i2m1 9018  ax-1ne0 9019  ax-rrecex 9022  ax-cnre 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-recs 6596  df-rdg 6631  df-nn 9961  df-n0 10182  df-bits 12893
  Copyright terms: Public domain W3C validator