MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Unicode version

Theorem bitsfi 12628
Description: Every number is associated to a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )

Proof of Theorem bitsfi
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0re 9974 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
2 2re 9815 . . . 4  |-  2  e.  RR
32a1i 10 . . 3  |-  ( N  e.  NN0  ->  2  e.  RR )
4 1lt2 9886 . . . 4  |-  1  <  2
54a1i 10 . . 3  |-  ( N  e.  NN0  ->  1  <  2 )
6 expnbnd 11230 . . 3  |-  ( ( N  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
71, 3, 5, 6syl3anc 1182 . 2  |-  ( N  e.  NN0  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
8 fzofi 11036 . . . . 5  |-  ( 0..^ m )  e.  Fin
9 simpl 443 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  NN0 )
10 nn0uz 10262 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
119, 10syl6eleq 2373 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
12 2nn 9877 . . . . . . . . . 10  |-  2  e.  NN
1312a1i 10 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  2  e.  NN )
14 simprl 732 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN )
1514nnnn0d 10018 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN0 )
1613, 15nnexpcld 11266 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  NN )
1716nnzd 10116 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  ZZ )
18 simprr 733 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  <  ( 2 ^ m ) )
19 elfzo2 10878 . . . . . . 7  |-  ( N  e.  ( 0..^ ( 2 ^ m ) )  <->  ( N  e.  ( ZZ>= `  0 )  /\  ( 2 ^ m
)  e.  ZZ  /\  N  <  ( 2 ^ m ) ) )
2011, 17, 18, 19syl3anbrc 1136 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( 0..^ ( 2 ^ m ) ) )
219nn0zd 10115 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ZZ )
22 bitsfzo 12626 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ m ) )  <->  (bits `  N
)  C_  ( 0..^ m ) ) )
2321, 15, 22syl2anc 642 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( N  e.  ( 0..^ ( 2 ^ m ) )  <-> 
(bits `  N )  C_  ( 0..^ m ) ) )
2420, 23mpbid 201 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  C_  ( 0..^ m ) )
25 ssfi 7083 . . . . 5  |-  ( ( ( 0..^ m )  e.  Fin  /\  (bits `  N )  C_  (
0..^ m ) )  ->  (bits `  N
)  e.  Fin )
268, 24, 25sylancr 644 . . . 4  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  e.  Fin )
2726expr 598 . . 3  |-  ( ( N  e.  NN0  /\  m  e.  NN )  ->  ( N  <  (
2 ^ m )  ->  (bits `  N
)  e.  Fin )
)
2827rexlimdva 2667 . 2  |-  ( N  e.  NN0  ->  ( E. m  e.  NN  N  <  ( 2 ^ m
)  ->  (bits `  N
)  e.  Fin )
)
297, 28mpd 14 1  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   E.wrex 2544    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Fincfn 6863   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230  ..^cfzo 10870   ^cexp 11104  bitscbits 12610
This theorem is referenced by:  bitsinv2  12634  bitsf1ocnv  12635  bitsf1  12637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-dvds 12532  df-bits 12613
  Copyright terms: Public domain W3C validator