MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfval Unicode version

Theorem bitsfval 12630
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Distinct variable group:    m, N

Proof of Theorem bitsfval
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . . 6  |-  ( n  =  N  ->  (
n  /  ( 2 ^ m ) )  =  ( N  / 
( 2 ^ m
) ) )
21fveq2d 5545 . . . . 5  |-  ( n  =  N  ->  ( |_ `  ( n  / 
( 2 ^ m
) ) )  =  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
32breq2d 4051 . . . 4  |-  ( n  =  N  ->  (
2  ||  ( |_ `  ( n  /  (
2 ^ m ) ) )  <->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
43notbid 285 . . 3  |-  ( n  =  N  ->  ( -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
54rabbidv 2793 . 2  |-  ( n  =  N  ->  { m  e.  NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) }  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
6 df-bits 12629 . 2  |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) ) } )
7 nn0ex 9987 . . 3  |-  NN0  e.  _V
87rabex 4181 . 2  |-  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }  e.  _V
95, 6, 8fvmpt 5618 1  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1632    e. wcel 1696   {crab 2560   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    / cdiv 9439   2c2 9811   NN0cn0 9981   ZZcz 10040   |_cfl 10940   ^cexp 11120    || cdivides 12547  bitscbits 12626
This theorem is referenced by:  bitsval  12631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rrecex 8825  ax-cnre 8826
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-recs 6404  df-rdg 6439  df-nn 9763  df-n0 9982  df-bits 12629
  Copyright terms: Public domain W3C validator