MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzo Unicode version

Theorem bitsfzo 12626
Description: The bits of a number are all less than  M iff the number is nonnegative and less than  2 ^ M. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfzo  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N
)  C_  ( 0..^ M ) ) )

Proof of Theorem bitsfzo
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsval 12615 . . . 4  |-  ( m  e.  (bits `  N
)  <->  ( N  e.  ZZ  /\  m  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
2 simp32 992 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  NN0 )
3 nn0uz 10262 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3syl6eleq 2373 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ( ZZ>= `  0 )
)
5 simp1r 980 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  M  e.  NN0 )
65nn0zd 10115 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  M  e.  ZZ )
7 2re 9815 . . . . . . . . . 10  |-  2  e.  RR
87a1i 10 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  2  e.  RR )
98, 2reexpcld 11262 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  RR )
10 simp1l 979 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  e.  ZZ )
1110zred 10117 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  e.  RR )
128, 5reexpcld 11262 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ M )  e.  RR )
139recnd 8861 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  CC )
1413mulid2d 8853 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 1  x.  ( 2 ^ m ) )  =  ( 2 ^ m
) )
15 simp33 993 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
16 2rp 10359 . . . . . . . . . . . . . . . 16  |-  2  e.  RR+
1716a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  2  e.  RR+ )
182nn0zd 10115 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ZZ )
1917, 18rpexpcld 11268 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  e.  RR+ )
2011, 19rerpdivcld 10417 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( N  /  ( 2 ^ m ) )  e.  RR )
21 1re 8837 . . . . . . . . . . . . . 14  |-  1  e.  RR
2221a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  e.  RR )
2320, 22ltnled 8966 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  <  1  <->  -.  1  <_  ( N  /  ( 2 ^ m ) ) ) )
24 0p1e1 9839 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
2524breq2i 4031 . . . . . . . . . . . . 13  |-  ( ( N  /  ( 2 ^ m ) )  <  ( 0  +  1 )  <->  ( N  /  ( 2 ^ m ) )  <  1 )
26 elfzole1 10882 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  ->  0  <_  N )
27263ad2ant2 977 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  0  <_  N )
2811, 19, 27divge0d 10426 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  0  <_  ( N  /  ( 2 ^ m ) ) )
29 0z 10035 . . . . . . . . . . . . . . . 16  |-  0  e.  ZZ
30 flbi 10946 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  /  (
2 ^ m ) )  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  ( N  /  (
2 ^ m ) ) )  =  0  <-> 
( 0  <_  ( N  /  ( 2 ^ m ) )  /\  ( N  /  (
2 ^ m ) )  <  ( 0  +  1 ) ) ) )
3120, 29, 30sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( |_ `  ( N  / 
( 2 ^ m
) ) )  =  0  <->  ( 0  <_ 
( N  /  (
2 ^ m ) )  /\  ( N  /  ( 2 ^ m ) )  < 
( 0  +  1 ) ) ) )
32 2z 10054 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
33 dvds0 12544 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  ZZ  ->  2  ||  0 )
3432, 33ax-mp 8 . . . . . . . . . . . . . . . 16  |-  2  ||  0
35 id 19 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  =  0  ->  ( |_ `  ( N  / 
( 2 ^ m
) ) )  =  0 )
3634, 35syl5breqr 4059 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  =  0  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
3731, 36syl6bir 220 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( (
0  <_  ( N  /  ( 2 ^ m ) )  /\  ( N  /  (
2 ^ m ) )  <  ( 0  +  1 ) )  ->  2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) ) ) )
3828, 37mpand 656 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  < 
( 0  +  1 )  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
3925, 38syl5bir 209 . . . . . . . . . . . 12  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( ( N  /  ( 2 ^ m ) )  <  1  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
4023, 39sylbird 226 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( -.  1  <_  ( N  / 
( 2 ^ m
) )  ->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
4115, 40mt3d 117 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  <_  ( N  /  ( 2 ^ m ) ) )
4222, 11, 19lemuldivd 10435 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( (
1  x.  ( 2 ^ m ) )  <_  N  <->  1  <_  ( N  /  ( 2 ^ m ) ) ) )
4341, 42mpbird 223 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 1  x.  ( 2 ^ m ) )  <_  N )
4414, 43eqbrtrrd 4045 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  <_  N )
45 elfzolt2 10883 . . . . . . . . 9  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  ->  N  <  ( 2 ^ M ) )
46453ad2ant2 977 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  N  <  ( 2 ^ M ) )
479, 11, 12, 44, 46lelttrd 8974 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( 2 ^ m )  < 
( 2 ^ M
) )
48 1lt2 9886 . . . . . . . . 9  |-  1  <  2
4948a1i 10 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  1  <  2 )
508, 18, 6, 49ltexp2d 11274 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  ( m  <  M  <->  ( 2 ^ m )  <  (
2 ^ M ) ) )
5147, 50mpbird 223 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  <  M )
52 elfzo2 10878 . . . . . 6  |-  ( m  e.  ( 0..^ M )  <->  ( m  e.  ( ZZ>= `  0 )  /\  M  e.  ZZ  /\  m  <  M ) )
534, 6, 51, 52syl3anbrc 1136 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) )  /\  ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) ) )  ->  m  e.  ( 0..^ M ) )
54533expia 1153 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  ( ( N  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )  ->  m  e.  ( 0..^ M ) ) )
551, 54syl5bi 208 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  ( m  e.  (bits `  N )  ->  m  e.  ( 0..^ M ) ) )
5655ssrdv 3185 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  N  e.  (
0..^ ( 2 ^ M ) ) )  ->  (bits `  N
)  C_  ( 0..^ M ) )
57 simpr 447 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  NN )
5857nnred 9761 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  RR )
59 simpllr 735 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  e.  NN0 )
6059nn0red 10019 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  e.  RR )
61 max2 10516 . . . . . . 7  |-  ( (
-u N  e.  RR  /\  M  e.  RR )  ->  M  <_  if ( -u N  <_  M ,  M ,  -u N
) )
6258, 60, 61syl2anc 642 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  M  <_  if ( -u N  <_  M ,  M ,  -u N
) )
63 simplr 731 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  (bits `  N
)  C_  ( 0..^ M ) )
6421, 7ltnlei 8939 . . . . . . . . . . . . . 14  |-  ( 1  <  2  <->  -.  2  <_  1 )
6548, 64mpbi 199 . . . . . . . . . . . . 13  |-  -.  2  <_  1
66 1nn 9757 . . . . . . . . . . . . . 14  |-  1  e.  NN
67 dvdsle 12574 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  1  e.  NN )  ->  ( 2  ||  1  ->  2  <_  1 ) )
6832, 66, 67mp2an 653 . . . . . . . . . . . . 13  |-  ( 2 
||  1  ->  2  <_  1 )
6965, 68mto 167 . . . . . . . . . . . 12  |-  -.  2  ||  1
70 1z 10053 . . . . . . . . . . . . 13  |-  1  e.  ZZ
71 dvdsnegb 12546 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 2  ||  1  <->  2 
||  -u 1 ) )
7232, 70, 71mp2an 653 . . . . . . . . . . . 12  |-  ( 2 
||  1  <->  2  ||  -u 1 )
7369, 72mtbi 289 . . . . . . . . . . 11  |-  -.  2  ||  -u 1
74 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
7574zred 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  RR )
76 2nn 9877 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN
7776a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  2  e.  NN )
7857nnnn0d 10018 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  e.  NN0 )
79 ifcl 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  if ( -u N  <_  M ,  M ,  -u N )  e.  NN0 )
8059, 78, 79syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  e. 
NN0 )
8177, 80nnexpcld 11266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  e.  NN )
8275, 81nndivred 9794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  e.  RR )
8321a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  1  e.  RR )
8474zcnd 10118 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  N  e.  CC )
8581nncnd 9762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  e.  CC )
86 2cn 9816 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
8786a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  2  e.  CC )
88 2ne0 9829 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
8988a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  2  =/=  0
)
9080nn0zd 10115 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  e.  ZZ )
9187, 89, 90expne0d 11251 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  =/=  0 )
9284, 85, 91divnegd 9549 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  =  ( -u N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) ) )
9380nn0red 10019 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  e.  RR )
9481nnred 9761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  e.  RR )
95 max1 10514 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u N  e.  RR  /\  M  e.  RR )  ->  -u N  <_  if ( -u N  <_  M ,  M ,  -u N
) )
9658, 60, 95syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  if ( -u N  <_  M ,  M ,  -u N
) )
97 uzid 10242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
9832, 97ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ( ZZ>= `  2 )
99 bernneq3 11229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  if ( -u N  <_  M ,  M ,  -u N
)  e.  NN0 )  ->  if ( -u N  <_  M ,  M ,  -u N )  <  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )
10098, 80, 99sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  < 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )
10193, 94, 100ltled 8967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  <_ 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )
10258, 93, 94, 96, 101letrd 8973 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )
10385mulid1d 8852 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  x.  1 )  =  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )
104102, 103breqtrrd 4049 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u N  <_  (
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) )  x.  1 ) )
10581nnrpd 10389 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  e.  RR+ )
10658, 83, 105ledivmuld 10439 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( -u N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) )  <_  1  <->  -u N  <_ 
( ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) )  x.  1 ) ) )
107104, 106mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( -u N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) )  <_  1 )
10892, 107eqbrtrd 4043 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  <_ 
1 )
10982, 83, 108lenegcon1d 9354 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -u 1  <_  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) )
11057nngt0d 9789 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  -u N
)
11181nngt0d 9789 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )
11258, 94, 110, 111divgt0d 9692 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  ( -u N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) )
113112, 92breqtrrd 4049 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  0  <  -u ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) )
11482lt0neg1d 9342 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) )  <  0  <->  0  <  -u ( N  /  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) ) ) )
115113, 114mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  <  0 )
116 neg1cn 9813 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  CC
117 ax-1cn 8795 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
118116, 117addcomi 9003 . . . . . . . . . . . . . . 15  |-  ( -u
1  +  1 )  =  ( 1  + 
-u 1 )
119117negidi 9115 . . . . . . . . . . . . . . 15  |-  ( 1  +  -u 1 )  =  0
120118, 119eqtri 2303 . . . . . . . . . . . . . 14  |-  ( -u
1  +  1 )  =  0
121115, 120syl6breqr 4063 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  < 
( -u 1  +  1 ) )
122 1nn0 9981 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
123122nn0negzi 10058 . . . . . . . . . . . . . 14  |-  -u 1  e.  ZZ
124 flbi 10946 . . . . . . . . . . . . . 14  |-  ( ( ( N  /  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )  e.  RR  /\  -u 1  e.  ZZ )  ->  (
( |_ `  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) )  =  -u 1  <->  (
-u 1  <_  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) )  /\  ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) )  < 
( -u 1  +  1 ) ) ) )
12582, 123, 124sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( ( |_
`  ( N  / 
( 2 ^ if ( -u N  <_  M ,  M ,  -u N
) ) ) )  =  -u 1  <->  ( -u 1  <_  ( N  /  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )  /\  ( N  /  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) )  < 
( -u 1  +  1 ) ) ) )
126109, 121, 125mpbir2and 888 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( |_ `  ( N  /  (
2 ^ if (
-u N  <_  M ,  M ,  -u N
) ) ) )  =  -u 1 )
127126breq2d 4035 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( 2  ||  ( |_ `  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) )  <->  2  ||  -u 1
) )
12873, 127mtbiri 294 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) ) )
129 bitsval2 12616 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  if ( -u N  <_  M ,  M ,  -u N )  e.  NN0 )  ->  ( if (
-u N  <_  M ,  M ,  -u N
)  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) ) ) )
13074, 80, 129syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( if (
-u N  <_  M ,  M ,  -u N
)  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ if ( -u N  <_  M ,  M ,  -u N ) ) ) ) ) )
131128, 130mpbird 223 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  e.  (bits `  N )
)
13263, 131sseldd 3181 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  e.  ( 0..^ M ) )
133 elfzolt2 10883 . . . . . . . 8  |-  ( if ( -u N  <_  M ,  M ,  -u N )  e.  ( 0..^ M )  ->  if ( -u N  <_  M ,  M ,  -u N )  <  M
)
134132, 133syl 15 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  if ( -u N  <_  M ,  M ,  -u N )  < 
M )
13593, 60ltnled 8966 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  ( if (
-u N  <_  M ,  M ,  -u N
)  <  M  <->  -.  M  <_  if ( -u N  <_  M ,  M ,  -u N ) ) )
136134, 135mpbid 201 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  (bits `  N )  C_  (
0..^ M ) )  /\  -u N  e.  NN )  ->  -.  M  <_  if ( -u N  <_  M ,  M ,  -u N ) )
13762, 136pm2.65da 559 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  -.  -u N  e.  NN )
138 simpr 447 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  -u N  e.  NN )
139137, 138nsyl 113 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  -.  ( N  e.  RR  /\  -u N  e.  NN ) )
140 simpll 730 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  ZZ )
141 elznn0nn 10037 . . . . . 6  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
142140, 141sylib 188 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
143142ord 366 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  ( -.  N  e.  NN0  ->  ( N  e.  RR  /\  -u N  e.  NN ) ) )
144139, 143mt3d 117 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  NN0 )
145 simplr 731 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  M  e.  NN0 )
146 simpr 447 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  (bits `  N
)  C_  ( 0..^ M ) )
147 eqid 2283 . . 3  |-  sup ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  `'  <  )  =  sup ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  `'  <  )
148144, 145, 146, 147bitsfzolem 12625 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  (bits `  N )  C_  ( 0..^ M ) )  ->  N  e.  ( 0..^ ( 2 ^ M ) ) )
14956, 148impbida 805 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N
)  C_  ( 0..^ M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547    C_ wss 3152   ifcif 3565   class class class wbr 4023   `'ccnv 4688   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354  ..^cfzo 10870   |_cfl 10924   ^cexp 11104    || cdivides 12531  bitscbits 12610
This theorem is referenced by:  bitsfi  12628  0bits  12630  bitsinv1  12633  sadcaddlem  12648  sadaddlem  12657  sadasslem  12661  sadeq  12663
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-dvds 12532  df-bits 12613
  Copyright terms: Public domain W3C validator