MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsmod Unicode version

Theorem bitsmod 12627
Description: Truncating the bit sequence after some  M is equivalent to reducing the argument  mod  2 ^ M. (Contributed by Mario Carneiro, 6-Sep-2016.)
Assertion
Ref Expression
bitsmod  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
(bits `  ( N  mod  ( 2 ^ M
) ) )  =  ( (bits `  N
)  i^i  ( 0..^ M ) ) )

Proof of Theorem bitsmod
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  N  e.  ZZ )
2 2nn 9877 . . . . . . . . . 10  |-  2  e.  NN
32a1i 10 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
2  e.  NN )
4 simpr 447 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  M  e.  NN0 )
53, 4nnexpcld 11266 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ M
)  e.  NN )
61, 5zmodcld 10990 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  mod  (
2 ^ M ) )  e.  NN0 )
76nn0zd 10115 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  mod  (
2 ^ M ) )  e.  ZZ )
87biantrurd 494 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) )  <->  ( ( N  mod  ( 2 ^ M ) )  e.  ZZ  /\  ( x  e.  NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) ) ) ) )
91ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  N  e.  ZZ )
10 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  x  e.  NN0 )
11 bitsval2 12616 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  x  e.  NN0 )  -> 
( x  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ x ) ) ) ) )
129, 10, 11syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ x ) ) ) ) )
13 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  x  <  M )
1413biantrud 493 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  e.  (bits `  N )  <->  ( x  e.  (bits `  N )  /\  x  <  M ) ) )
15 2z 10054 . . . . . . . . . . . . 13  |-  2  e.  ZZ
1615a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  e.  ZZ )
179zred 10117 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  N  e.  RR )
182a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  e.  NN )
1918, 10nnexpcld 11266 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x )  e.  NN )
2017, 19nndivred 9794 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  /  ( 2 ^ x ) )  e.  RR )
2120flcld 10930 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( N  / 
( 2 ^ x
) ) )  e.  ZZ )
227ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  mod  ( 2 ^ M ) )  e.  ZZ )
2322zred 10117 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  mod  ( 2 ^ M ) )  e.  RR )
2423, 19nndivred 9794 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) )  e.  RR )
2524flcld 10930 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )  e.  ZZ )
26 2cn 9816 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
2726a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  e.  CC )
2827, 10expp1d 11246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ ( x  +  1 ) )  =  ( ( 2 ^ x )  x.  2 ) )
29 1nn0 9981 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  NN0
3029a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  1  e.  NN0 )
3110, 30nn0addcld 10022 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  +  1 )  e.  NN0 )
3231nn0zd 10115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  +  1 )  e.  ZZ )
33 simplr 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  M  e.  NN0 )
3433adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  M  e.  NN0 )
3534nn0zd 10115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  M  e.  ZZ )
36 nn0ltp1le 10074 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  NN0  /\  M  e.  NN0 )  -> 
( x  <  M  <->  ( x  +  1 )  <_  M ) )
3710, 34, 36syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  <  M  <->  ( x  +  1 )  <_  M ) )
3813, 37mpbid 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
x  +  1 )  <_  M )
39 eluz2 10236 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( ZZ>= `  (
x  +  1 ) )  <->  ( ( x  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( x  +  1 )  <_  M ) )
4032, 35, 38, 39syl3anbrc 1136 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  M  e.  ( ZZ>= `  ( x  +  1 ) ) )
41 dvdsexp 12584 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  ( x  +  1
)  e.  NN0  /\  M  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
( 2 ^ (
x  +  1 ) )  ||  ( 2 ^ M ) )
4216, 31, 40, 41syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ ( x  +  1 ) ) 
||  ( 2 ^ M ) )
4328, 42eqbrtrrd 4045 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  x.  2 ) 
||  ( 2 ^ M ) )
445ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ M )  e.  NN )
4544nnrpd 10389 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ M )  e.  RR+ )
46 moddifz 10983 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  RR  /\  ( 2 ^ M
)  e.  RR+ )  ->  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ M ) )  e.  ZZ )
4717, 45, 46syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ M ) )  e.  ZZ )
4844nnzd 10116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ M )  e.  ZZ )
49 2ne0 9829 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
5049a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  =/=  0 )
5127, 50, 35expne0d 11251 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ M )  =/=  0 )
529, 22zsubcld 10122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  -  ( N  mod  ( 2 ^ M
) ) )  e.  ZZ )
53 dvdsval2 12534 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2 ^ M
)  e.  ZZ  /\  ( 2 ^ M
)  =/=  0  /\  ( N  -  ( N  mod  ( 2 ^ M ) ) )  e.  ZZ )  -> 
( ( 2 ^ M )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) )  <->  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ M
) )  e.  ZZ ) )
5448, 51, 52, 53syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ M
)  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) )  <->  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ M
) )  e.  ZZ ) )
5547, 54mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ M ) 
||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )
5619nnzd 10116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x )  e.  ZZ )
5756, 16zmulcld 10123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  x.  2 )  e.  ZZ )
58 dvdstr 12562 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2 ^ x )  x.  2 )  e.  ZZ  /\  ( 2 ^ M
)  e.  ZZ  /\  ( N  -  ( N  mod  ( 2 ^ M ) ) )  e.  ZZ )  -> 
( ( ( ( 2 ^ x )  x.  2 )  ||  ( 2 ^ M
)  /\  ( 2 ^ M )  ||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )  ->  ( (
2 ^ x )  x.  2 )  ||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) ) )
5957, 48, 52, 58syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( ( 2 ^ x )  x.  2 )  ||  (
2 ^ M )  /\  ( 2 ^ M )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) ) )  ->  ( ( 2 ^ x )  x.  2 )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) ) ) )
6043, 55, 59mp2and 660 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  x.  2 ) 
||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )
6152zcnd 10118 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  -  ( N  mod  ( 2 ^ M
) ) )  e.  CC )
6219nncnd 9762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x )  e.  CC )
6310nn0zd 10115 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  x  e.  ZZ )
6427, 50, 63expne0d 11251 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x )  =/=  0 )
6561, 62, 64divcan2d 9538 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  x.  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )  =  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )
6660, 65breqtrrd 4049 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  x.  2 ) 
||  ( ( 2 ^ x )  x.  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
6710nn0red 10019 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  x  e.  RR )
6834nn0red 10019 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  M  e.  RR )
6967, 68, 13ltled 8967 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  x  <_  M )
70 eluz2 10236 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( ZZ>= `  x
)  <->  ( x  e.  ZZ  /\  M  e.  ZZ  /\  x  <_  M ) )
7163, 35, 69, 70syl3anbrc 1136 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  M  e.  ( ZZ>= `  x )
)
72 dvdsexp 12584 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  x  e.  NN0  /\  M  e.  ( ZZ>= `  x )
)  ->  ( 2 ^ x )  ||  ( 2 ^ M
) )
7316, 10, 71, 72syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x ) 
||  ( 2 ^ M ) )
74 dvdstr 12562 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2 ^ x
)  e.  ZZ  /\  ( 2 ^ M
)  e.  ZZ  /\  ( N  -  ( N  mod  ( 2 ^ M ) ) )  e.  ZZ )  -> 
( ( ( 2 ^ x )  ||  ( 2 ^ M
)  /\  ( 2 ^ M )  ||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )  ->  ( 2 ^ x )  ||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) ) )
7556, 48, 52, 74syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( 2 ^ x )  ||  (
2 ^ M )  /\  ( 2 ^ M )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) ) )  ->  ( 2 ^ x )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) ) ) )
7673, 55, 75mp2and 660 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2 ^ x ) 
||  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )
77 dvdsval2 12534 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ x
)  e.  ZZ  /\  ( 2 ^ x
)  =/=  0  /\  ( N  -  ( N  mod  ( 2 ^ M ) ) )  e.  ZZ )  -> 
( ( 2 ^ x )  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) )  <->  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ x
) )  e.  ZZ ) )
7856, 64, 52, 77syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( 2 ^ x
)  ||  ( N  -  ( N  mod  ( 2 ^ M
) ) )  <->  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ x
) )  e.  ZZ ) )
7976, 78mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) )  e.  ZZ )
80 dvdscmulr 12557 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) )  e.  ZZ  /\  (
( 2 ^ x
)  e.  ZZ  /\  ( 2 ^ x
)  =/=  0 ) )  ->  ( (
( 2 ^ x
)  x.  2 ) 
||  ( ( 2 ^ x )  x.  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )  <->  2  ||  (
( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
8116, 79, 56, 64, 80syl112anc 1186 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( 2 ^ x )  x.  2 )  ||  ( ( 2 ^ x )  x.  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ x
) ) )  <->  2  ||  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
8266, 81mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  ||  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )
8322zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  mod  ( 2 ^ M ) )  e.  CC )
849zcnd 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  N  e.  CC )
8583, 84pncan3d 9160 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( N  mod  (
2 ^ M ) )  +  ( N  -  ( N  mod  ( 2 ^ M
) ) ) )  =  N )
8685oveq1d 5873 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( N  mod  ( 2 ^ M
) )  +  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )  /  ( 2 ^ x ) )  =  ( N  / 
( 2 ^ x
) ) )
8783, 61, 62, 64divdird 9574 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( N  mod  ( 2 ^ M
) )  +  ( N  -  ( N  mod  ( 2 ^ M ) ) ) )  /  ( 2 ^ x ) )  =  ( ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
8886, 87eqtr3d 2317 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( N  /  ( 2 ^ x ) )  =  ( ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
8988fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( N  / 
( 2 ^ x
) ) )  =  ( |_ `  (
( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) ) )
90 fladdz 10950 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  e.  RR  /\  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) )  e.  ZZ )  -> 
( |_ `  (
( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )  =  ( ( |_ `  ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M
) ) )  / 
( 2 ^ x
) ) ) )
9124, 79, 90syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )  =  ( ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
9289, 91eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( N  / 
( 2 ^ x
) ) )  =  ( ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) ) )
9392oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( |_ `  ( N  /  ( 2 ^ x ) ) )  -  ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) ) )  =  ( ( ( |_
`  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )  -  ( |_
`  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) ) ) )
9425zcnd 10118 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )  e.  CC )
9579zcnd 10118 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) )  e.  CC )
9694, 95pncan2d 9159 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) )  +  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )  -  ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) ) )  =  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )
9793, 96eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( |_ `  ( N  /  ( 2 ^ x ) ) )  -  ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) ) )  =  ( ( N  -  ( N  mod  ( 2 ^ M ) ) )  /  ( 2 ^ x ) ) )
9882, 97breqtrrd 4049 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  2  ||  ( ( |_ `  ( N  /  (
2 ^ x ) ) )  -  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) ) ) )
99 dvdssub2 12566 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( 2 ^ x ) ) )  e.  ZZ  /\  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )  e.  ZZ )  /\  2  ||  ( ( |_ `  ( N  /  (
2 ^ x ) ) )  -  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) ) ) )  ->  ( 2 
||  ( |_ `  ( N  /  (
2 ^ x ) ) )  <->  2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )
10016, 21, 25, 98, 99syl31anc 1185 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
2  ||  ( |_ `  ( N  /  (
2 ^ x ) ) )  <->  2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )
101100notbid 285 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  ( -.  2  ||  ( |_
`  ( N  / 
( 2 ^ x
) ) )  <->  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )
10212, 14, 1013bitr3d 274 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  x  <  M )  ->  (
( x  e.  (bits `  N )  /\  x  <  M )  <->  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )
103 dvds0 12544 . . . . . . . . . . . . 13  |-  ( 2  e.  ZZ  ->  2  ||  0 )
10415, 103ax-mp 8 . . . . . . . . . . . 12  |-  2  ||  0
1051ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  N  e.  ZZ )
106105zred 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  N  e.  RR )
107 2rp 10359 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
108107a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
2  e.  RR+ )
10933nn0zd 10115 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  M  e.  ZZ )
110109adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  M  e.  ZZ )
111108, 110rpexpcld 11268 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ M
)  e.  RR+ )
112106, 111modcld 10977 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( N  mod  (
2 ^ M ) )  e.  RR )
113 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  x  e.  NN0 )
114113nn0zd 10115 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  x  e.  ZZ )
115108, 114rpexpcld 11268 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ x
)  e.  RR+ )
1166ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( N  mod  (
2 ^ M ) )  e.  NN0 )
117116nn0ge0d 10021 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
0  <_  ( N  mod  ( 2 ^ M
) ) )
118112, 115, 117divge0d 10426 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
0  <_  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )
119111rpred 10390 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ M
)  e.  RR )
120115rpred 10390 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ x
)  e.  RR )
121 modlt 10981 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  RR  /\  ( 2 ^ M
)  e.  RR+ )  ->  ( N  mod  (
2 ^ M ) )  <  ( 2 ^ M ) )
122106, 111, 121syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( N  mod  (
2 ^ M ) )  <  ( 2 ^ M ) )
123108rpred 10390 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
2  e.  RR )
124 1re 8837 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  RR
125 2re 9815 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
126 1lt2 9886 . . . . . . . . . . . . . . . . . . . 20  |-  1  <  2
127124, 125, 126ltleii 8941 . . . . . . . . . . . . . . . . . . 19  |-  1  <_  2
128127a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
1  <_  2 )
129 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  -.  x  <  M )
130110zred 10117 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  M  e.  RR )
131113nn0red 10019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  x  e.  RR )
132130, 131lenltd 8965 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( M  <_  x  <->  -.  x  <  M ) )
133129, 132mpbird 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  M  <_  x )
134 eluz2 10236 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
135110, 114, 133, 134syl3anbrc 1136 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  x  e.  ( ZZ>= `  M ) )
136123, 128, 135leexp2ad 11277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ M
)  <_  ( 2 ^ x ) )
137112, 119, 120, 122, 136ltletrd 8976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( N  mod  (
2 ^ M ) )  <  ( 2 ^ x ) )
138115rpcnd 10392 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2 ^ x
)  e.  CC )
139138mulid1d 8852 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( 2 ^ x )  x.  1 )  =  ( 2 ^ x ) )
140137, 139breqtrrd 4049 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( N  mod  (
2 ^ M ) )  <  ( ( 2 ^ x )  x.  1 ) )
141124a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
1  e.  RR )
142112, 141, 115ltdivmuld 10437 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) )  <  1  <->  ( N  mod  ( 2 ^ M ) )  <  ( ( 2 ^ x )  x.  1 ) ) )
143140, 142mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  <  1 )
144 1e0p1 10152 . . . . . . . . . . . . . 14  |-  1  =  ( 0  +  1 )
145143, 144syl6breq 4062 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  <  ( 0  +  1 ) )
146112, 115rerpdivcld 10417 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  e.  RR )
147 0z 10035 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
148 flbi 10946 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) )  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) )  =  0  <-> 
( 0  <_  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) )  /\  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) )  <  (
0  +  1 ) ) ) )
149146, 147, 148sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) )  =  0  <-> 
( 0  <_  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) )  /\  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) )  <  (
0  +  1 ) ) ) )
150118, 145, 149mpbir2and 888 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) )  =  0 )
151104, 150syl5breqr 4059 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) ) )
152 simpr 447 . . . . . . . . . . . 12  |-  ( ( x  e.  (bits `  N )  /\  x  <  M )  ->  x  <  M )
153129, 152nsyl 113 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  ->  -.  ( x  e.  (bits `  N )  /\  x  <  M ) )
154151, 1532thd 231 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( 2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) )  <->  -.  (
x  e.  (bits `  N )  /\  x  <  M ) ) )
155154con2bid 319 . . . . . . . . 9  |-  ( ( ( ( N  e.  ZZ  /\  M  e. 
NN0 )  /\  x  e.  NN0 )  /\  -.  x  <  M )  -> 
( ( x  e.  (bits `  N )  /\  x  <  M )  <->  -.  2  ||  ( |_
`  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) ) ) )
156102, 155pm2.61dan 766 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  ( ( x  e.  (bits `  N
)  /\  x  <  M )  <->  -.  2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )
157109biantrurd 494 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  ( ( x  e.  (bits `  N
)  /\  x  <  M )  <->  ( M  e.  ZZ  /\  ( x  e.  (bits `  N
)  /\  x  <  M ) ) ) )
158156, 157bitr3d 246 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  ( -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) )  <->  ( M  e.  ZZ  /\  ( x  e.  (bits `  N
)  /\  x  <  M ) ) ) )
159 an12 772 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  (bits `  N )  /\  x  <  M ) )  <->  ( x  e.  (bits `  N )  /\  ( M  e.  ZZ  /\  x  <  M ) ) )
160158, 159syl6bb 252 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  NN0 )  /\  x  e.  NN0 )  ->  ( -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) )  <->  ( x  e.  (bits `  N )  /\  ( M  e.  ZZ  /\  x  <  M ) ) ) )
161160pm5.32da 622 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( x  e. 
NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) )  <->  ( x  e.  NN0  /\  ( x  e.  (bits `  N
)  /\  ( M  e.  ZZ  /\  x  < 
M ) ) ) ) )
1628, 161bitr3d 246 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( ( N  mod  ( 2 ^ M ) )  e.  ZZ  /\  ( x  e.  NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) ) )  <->  ( x  e.  NN0  /\  ( x  e.  (bits `  N
)  /\  ( M  e.  ZZ  /\  x  < 
M ) ) ) ) )
163 3anass 938 . . . 4  |-  ( ( ( N  mod  (
2 ^ M ) )  e.  ZZ  /\  x  e.  NN0  /\  -.  2  ||  ( |_ `  ( ( N  mod  ( 2 ^ M
) )  /  (
2 ^ x ) ) ) )  <->  ( ( N  mod  ( 2 ^ M ) )  e.  ZZ  /\  ( x  e.  NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) ) ) )
164 elfzo2 10878 . . . . . . 7  |-  ( x  e.  ( 0..^ M )  <->  ( x  e.  ( ZZ>= `  0 )  /\  M  e.  ZZ  /\  x  <  M ) )
165 elnn0uz 10265 . . . . . . . 8  |-  ( x  e.  NN0  <->  x  e.  ( ZZ>=
`  0 ) )
1661653anbi1i 1142 . . . . . . 7  |-  ( ( x  e.  NN0  /\  M  e.  ZZ  /\  x  <  M )  <->  ( x  e.  ( ZZ>= `  0 )  /\  M  e.  ZZ  /\  x  <  M ) )
167 3anass 938 . . . . . . 7  |-  ( ( x  e.  NN0  /\  M  e.  ZZ  /\  x  <  M )  <->  ( x  e.  NN0  /\  ( M  e.  ZZ  /\  x  <  M ) ) )
168164, 166, 1673bitr2i 264 . . . . . 6  |-  ( x  e.  ( 0..^ M )  <->  ( x  e. 
NN0  /\  ( M  e.  ZZ  /\  x  < 
M ) ) )
169168anbi2i 675 . . . . 5  |-  ( ( x  e.  (bits `  N )  /\  x  e.  ( 0..^ M ) )  <->  ( x  e.  (bits `  N )  /\  ( x  e.  NN0  /\  ( M  e.  ZZ  /\  x  <  M ) ) ) )
170 an12 772 . . . . 5  |-  ( ( x  e.  (bits `  N )  /\  (
x  e.  NN0  /\  ( M  e.  ZZ  /\  x  <  M ) ) )  <->  ( x  e.  NN0  /\  ( x  e.  (bits `  N
)  /\  ( M  e.  ZZ  /\  x  < 
M ) ) ) )
171169, 170bitri 240 . . . 4  |-  ( ( x  e.  (bits `  N )  /\  x  e.  ( 0..^ M ) )  <->  ( x  e. 
NN0  /\  ( x  e.  (bits `  N )  /\  ( M  e.  ZZ  /\  x  <  M ) ) ) )
172162, 163, 1713bitr4g 279 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( ( N  mod  ( 2 ^ M ) )  e.  ZZ  /\  x  e. 
NN0  /\  -.  2  ||  ( |_ `  (
( N  mod  (
2 ^ M ) )  /  ( 2 ^ x ) ) ) )  <->  ( x  e.  (bits `  N )  /\  x  e.  (
0..^ M ) ) ) )
173 bitsval 12615 . . 3  |-  ( x  e.  (bits `  ( N  mod  ( 2 ^ M ) ) )  <-> 
( ( N  mod  ( 2 ^ M
) )  e.  ZZ  /\  x  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( N  mod  ( 2 ^ M ) )  / 
( 2 ^ x
) ) ) ) )
174 elin 3358 . . 3  |-  ( x  e.  ( (bits `  N )  i^i  (
0..^ M ) )  <-> 
( x  e.  (bits `  N )  /\  x  e.  ( 0..^ M ) ) )
175172, 173, 1743bitr4g 279 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( x  e.  (bits `  ( N  mod  (
2 ^ M ) ) )  <->  x  e.  ( (bits `  N )  i^i  ( 0..^ M ) ) ) )
176175eqrdv 2281 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
(bits `  ( N  mod  ( 2 ^ M
) ) )  =  ( (bits `  N
)  i^i  ( 0..^ M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    i^i cin 3151   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354  ..^cfzo 10870   |_cfl 10924    mod cmo 10973   ^cexp 11104    || cdivides 12531  bitscbits 12610
This theorem is referenced by:  sadaddlem  12657  sadadd  12658  bitsres  12664  smumul  12684
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-dvds 12532  df-bits 12613
  Copyright terms: Public domain W3C validator