MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Unicode version

Theorem bitsp1o 12640
Description: The  M  +  1-th bit of  2 N  +  1 is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 10070 . . . . . 6  |-  2  e.  ZZ
21a1i 10 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3 id 19 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
42, 3zmulcld 10139 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
54peano2zd 10136 . . 3  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  ZZ )
6 bitsp1 12638 . . 3  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
75, 6sylan 457 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
8 2re 9831 . . . . . . . . . . . 12  |-  2  e.  RR
98a1i 10 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  RR )
10 zre 10044 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
119, 10remulcld 8879 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  RR )
1211recnd 8877 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
13 ax-1cn 8811 . . . . . . . . . 10  |-  1  e.  CC
1413a1i 10 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  1  e.  CC )
15 2cn 9832 . . . . . . . . . 10  |-  2  e.  CC
1615a1i 10 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  CC )
17 2ne0 9845 . . . . . . . . . 10  |-  2  =/=  0
1817a1i 10 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  =/=  0 )
1912, 14, 16, 18divdird 9590 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( ( 2  x.  N )  /  2 )  +  ( 1  /  2
) ) )
20 zcn 10045 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
2120, 16, 18divcan3d 9557 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  /  2 )  =  N )
2221oveq1d 5889 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  /  2
)  +  ( 1  /  2 ) )  =  ( N  +  ( 1  /  2
) ) )
2319, 22eqtrd 2328 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( N  +  ( 1  /  2
) ) )
2423fveq2d 5545 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  ( |_ `  ( N  +  ( 1  /  2 ) ) ) )
25 0re 8854 . . . . . . . . 9  |-  0  e.  RR
268, 17rereccli 9541 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
27 halfgt0 9948 . . . . . . . . 9  |-  0  <  ( 1  /  2
)
2825, 26, 27ltleii 8957 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
29 halflt1 9949 . . . . . . . 8  |-  ( 1  /  2 )  <  1
3028, 29pm3.2i 441 . . . . . . 7  |-  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
31 flbi2 10963 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( 1  /  2
)  e.  RR )  ->  ( ( |_
`  ( N  +  ( 1  /  2
) ) )  =  N  <->  ( 0  <_ 
( 1  /  2
)  /\  ( 1  /  2 )  <  1 ) ) )
3226, 31mpan2 652 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  +  ( 1  /  2 ) ) )  =  N  <->  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 ) ) )
3330, 32mpbiri 224 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  +  ( 1  /  2
) ) )  =  N )
3424, 33eqtrd 2328 . . . . 5  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  N )
3534adantr 451 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) )  =  N )
3635fveq2d 5545 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
(bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) )  =  (bits `  N )
)
3736eleq2d 2363 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( M  e.  (bits `  ( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) ) )  <->  M  e.  (bits `  N ) ) )
387, 37bitrd 244 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   NN0cn0 9981   ZZcz 10040   |_cfl 10940  bitscbits 12626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fl 10941  df-seq 11063  df-exp 11121  df-bits 12629
  Copyright terms: Public domain W3C validator