MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcvx Structured version   Unicode version

Theorem blcvx 18821
Description: An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
blcvx.s  |-  S  =  ( P ( ball `  ( abs  o.  -  ) ) R )
Assertion
Ref Expression
blcvx  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  S )

Proof of Theorem blcvx
StepHypRef Expression
1 simpr3 965 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  ( 0 [,] 1
) )
2 0re 9083 . . . . . . . . 9  |-  0  e.  RR
3 1re 9082 . . . . . . . . 9  |-  1  e.  RR
42, 3elicc2i 10968 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
51, 4sylib 189 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  e.  RR  /\  0  <_  T  /\  T  <_ 
1 ) )
65simp1d 969 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  RR )
76recnd 9106 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  CC )
8 simpr1 963 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  S )
9 blcvx.s . . . . . . . 8  |-  S  =  ( P ( ball `  ( abs  o.  -  ) ) R )
108, 9syl6eleq 2525 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  ( P ( ball `  ( abs  o.  -  ) ) R ) )
11 cnxmet 18799 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1211a1i 11 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
13 simpll 731 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  P  e.  CC )
14 simplr 732 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  R  e.  RR* )
15 elbl 18410 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R
) ) )
1612, 13, 14, 15syl3anc 1184 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( A  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R
) ) )
1710, 16mpbid 202 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R ) )
1817simpld 446 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  CC )
197, 18mulcld 9100 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  A )  e.  CC )
20 resubcl 9357 . . . . . . 7  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
213, 6, 20sylancr 645 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  -  T )  e.  RR )
2221recnd 9106 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  -  T )  e.  CC )
23 simpr2 964 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  S )
2423, 9syl6eleq 2525 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  ( P ( ball `  ( abs  o.  -  ) ) R ) )
25 elbl 18410 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  ( B  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R
) ) )
2612, 13, 14, 25syl3anc 1184 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( B  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R
) ) )
2724, 26mpbid 202 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R ) )
2827simpld 446 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  CC )
2922, 28mulcld 9100 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  B )  e.  CC )
3019, 29addcld 9099 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC )
31 eqid 2435 . . . . . . 7  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3231cnmetdval 18797 . . . . . 6  |-  ( ( P  e.  CC  /\  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  CC )  ->  ( P ( abs  o.  -  )
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) ) )
3313, 30, 32syl2anc 643 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) ) )
347, 13, 18subdid 9481 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  ( P  -  A ) )  =  ( ( T  x.  P )  -  ( T  x.  A )
) )
3522, 13, 28subdid 9481 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( ( ( 1  -  T )  x.  P )  -  ( ( 1  -  T )  x.  B
) ) )
3634, 35oveq12d 6091 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  =  ( ( ( T  x.  P )  -  ( T  x.  A ) )  +  ( ( ( 1  -  T )  x.  P )  -  (
( 1  -  T
)  x.  B ) ) ) )
377, 13mulcld 9100 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  P )  e.  CC )
3822, 13mulcld 9100 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  P )  e.  CC )
3937, 38, 19, 29addsub4d 9450 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  P )  +  ( ( 1  -  T
)  x.  P ) )  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( ( ( T  x.  P )  -  ( T  x.  A ) )  +  ( ( ( 1  -  T )  x.  P )  -  (
( 1  -  T
)  x.  B ) ) ) )
40 ax-1cn 9040 . . . . . . . . . . 11  |-  1  e.  CC
41 pncan3 9305 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
427, 40, 41sylancl 644 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  +  ( 1  -  T ) )  =  1 )
4342oveq1d 6088 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  P )  =  ( 1  x.  P ) )
447, 22, 13adddird 9105 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  P )  =  ( ( T  x.  P )  +  ( ( 1  -  T )  x.  P
) ) )
45 mulid2 9081 . . . . . . . . . 10  |-  ( P  e.  CC  ->  (
1  x.  P )  =  P )
4645ad2antrr 707 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  x.  P )  =  P )
4743, 44, 463eqtr3d 2475 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  P
)  +  ( ( 1  -  T )  x.  P ) )  =  P )
4847oveq1d 6088 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  P )  +  ( ( 1  -  T
)  x.  P ) )  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
4936, 39, 483eqtr2d 2473 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  =  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
5049fveq2d 5724 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) ) )
5133, 50eqtr4d 2470 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( abs `  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) ) ) )
5213, 18subcld 9403 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P  -  A )  e.  CC )
537, 52mulcld 9100 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  ( P  -  A ) )  e.  CC )
5413, 28subcld 9403 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P  -  B )  e.  CC )
5522, 54mulcld 9100 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  e.  CC )
5653, 55addcld 9099 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  e.  CC )
5756abscld 12230 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
5857adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
5953abscld 12230 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  e.  RR )
6055abscld 12230 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )
6159, 60readdcld 9107 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  e.  RR )
6261adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  e.  RR )
63 simpr 448 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  R  e.  RR )
6453, 55abstrid 12250 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <_ 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) ) )
6564adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <_ 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) ) )
66 oveq1 6080 . . . . . . . . . . . 12  |-  ( T  =  0  ->  ( T  x.  ( P  -  A ) )  =  ( 0  x.  ( P  -  A )
) )
6752mul02d 9256 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  x.  ( P  -  A ) )  =  0 )
6866, 67sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( T  x.  ( P  -  A ) )  =  0 )
6968abs00bd 12088 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  0 )
70 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( T  =  0  ->  (
1  -  T )  =  ( 1  -  0 ) )
7140subid1i 9364 . . . . . . . . . . . . . 14  |-  ( 1  -  0 )  =  1
7270, 71syl6eq 2483 . . . . . . . . . . . . 13  |-  ( T  =  0  ->  (
1  -  T )  =  1 )
7372oveq1d 6088 . . . . . . . . . . . 12  |-  ( T  =  0  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( 1  x.  ( P  -  B
) ) )
7454mulid2d 9098 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  x.  ( P  -  B ) )  =  ( P  -  B ) )
7573, 74sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( P  -  B ) )
7675fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( abs `  ( P  -  B )
) )
7769, 76oveq12d 6091 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  =  ( 0  +  ( abs `  ( P  -  B
) ) ) )
7854abscld 12230 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  e.  RR )
7978recnd 9106 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  e.  CC )
8079addid2d 9259 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  =  ( abs `  ( P  -  B )
) )
8131cnmetdval 18797 . . . . . . . . . . . . 13  |-  ( ( P  e.  CC  /\  B  e.  CC )  ->  ( P ( abs 
o.  -  ) B
)  =  ( abs `  ( P  -  B
) ) )
8213, 28, 81syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) B )  =  ( abs `  ( P  -  B )
) )
8380, 82eqtr4d 2470 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  =  ( P ( abs 
o.  -  ) B
) )
8427simprd 450 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) B )  <  R )
8583, 84eqbrtrd 4224 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  < 
R )
8685adantr 452 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  < 
R )
8777, 86eqbrtrd 4224 . . . . . . . 8  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
8887adantlr 696 . . . . . . 7  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =  0 )  -> 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
897, 52absmuld 12248 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( ( abs `  T
)  x.  ( abs `  ( P  -  A
) ) ) )
905simp2d 970 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  T )
916, 90absidd 12217 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  T )  =  T )
9291oveq1d 6088 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  T
)  x.  ( abs `  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9389, 92eqtrd 2467 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9493ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9531cnmetdval 18797 . . . . . . . . . . . . . 14  |-  ( ( P  e.  CC  /\  A  e.  CC )  ->  ( P ( abs 
o.  -  ) A
)  =  ( abs `  ( P  -  A
) ) )
9613, 18, 95syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) A )  =  ( abs `  ( P  -  A )
) )
9717simprd 450 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) A )  <  R )
9896, 97eqbrtrrd 4226 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  < 
R )
9998ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( P  -  A ) )  < 
R )
10052abscld 12230 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  e.  RR )
101100ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( P  -  A ) )  e.  RR )
102 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  R  e.  RR )
1036ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  T  e.  RR )
1042a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  e.  RR )
105104, 6, 90leltned 9216 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <  T  <->  T  =/=  0 ) )
106105biimpar 472 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =/=  0 )  ->  0  <  T )
107106adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  0  <  T )
108 ltmul2 9853 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( P  -  A )
)  e.  RR  /\  R  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( ( abs `  ( P  -  A )
)  <  R  <->  ( T  x.  ( abs `  ( P  -  A )
) )  <  ( T  x.  R )
) )
109101, 102, 103, 107, 108syl112anc 1188 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( P  -  A )
)  <  R  <->  ( T  x.  ( abs `  ( P  -  A )
) )  <  ( T  x.  R )
) )
11099, 109mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( T  x.  ( abs `  ( P  -  A
) ) )  < 
( T  x.  R
) )
11194, 110eqbrtrd 4224 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  < 
( T  x.  R
) )
11222, 54absmuld 12248 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( abs `  (
1  -  T ) )  x.  ( abs `  ( P  -  B
) ) ) )
1133a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  1  e.  RR )
1145simp3d 971 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  <_  1 )
1156, 113, 114abssubge0d 12226 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( 1  -  T ) )  =  ( 1  -  T
) )
116115oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  (
1  -  T ) )  x.  ( abs `  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
117112, 116eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
118117adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
11978adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  e.  RR )
120 subge0 9533 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 0  <_  (
1  -  T )  <-> 
T  <_  1 ) )
1213, 6, 120sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <_  ( 1  -  T )  <->  T  <_  1 ) )
122114, 121mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  ( 1  -  T
) )
12321, 122jca 519 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )
124123adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )
12582, 84eqbrtrrd 4226 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  < 
R )
126125adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  < 
R )
127 ltle 9155 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( P  -  B )
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  ( P  -  B )
)  <  R  ->  ( abs `  ( P  -  B ) )  <_  R ) )
12878, 127sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( P  -  B )
)  <  R  ->  ( abs `  ( P  -  B ) )  <_  R ) )
129126, 128mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  <_  R )
130 lemul2a 9857 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  ( P  -  B )
)  e.  RR  /\  R  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )  /\  ( abs `  ( P  -  B )
)  <_  R )  ->  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) )  <_  ( ( 1  -  T )  x.  R ) )
131119, 63, 124, 129, 130syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  x.  ( abs `  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
132118, 131eqbrtrd 4224 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
133132adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
13459adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  e.  RR )
13560adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )
136 remulcl 9067 . . . . . . . . . . . 12  |-  ( ( T  e.  RR  /\  R  e.  RR )  ->  ( T  x.  R
)  e.  RR )
1376, 136sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( T  x.  R )  e.  RR )
138 remulcl 9067 . . . . . . . . . . . 12  |-  ( ( ( 1  -  T
)  e.  RR  /\  R  e.  RR )  ->  ( ( 1  -  T )  x.  R
)  e.  RR )
13921, 138sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  x.  R )  e.  RR )
140 ltleadd 9503 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( T  x.  ( P  -  A ) ) )  e.  RR  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )  /\  (
( T  x.  R
)  e.  RR  /\  ( ( 1  -  T )  x.  R
)  e.  RR ) )  ->  ( (
( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
141134, 135, 137, 139, 140syl22anc 1185 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( ( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
142141adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( ( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
143111, 133, 142mp2and 661 . . . . . . . 8  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) )
14442oveq1d 6088 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( 1  x.  R ) )
145144adantr 452 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( 1  x.  R ) )
1467adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  T  e.  CC )
14722adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
1  -  T )  e.  CC )
14863recnd 9106 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  R  e.  CC )
149146, 147, 148adddird 9105 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( ( T  x.  R )  +  ( ( 1  -  T )  x.  R
) ) )
150148mulid2d 9098 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
1  x.  R )  =  R )
151145, 149, 1503eqtr3d 2475 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) )  =  R )
152151adantr 452 . . . . . . . 8  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) )  =  R )
153143, 152breqtrd 4228 . . . . . . 7  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
15488, 153pm2.61dane 2676 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
15558, 62, 63, 65, 154lelttrd 9220 . . . . 5  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
15657adantr 452 . . . . . . 7  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
157 ltpnf 10713 . . . . . . 7  |-  ( ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B
) ) ) )  e.  RR  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <  +oo )
158156, 157syl 16 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <  +oo )
159 simpr 448 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  R  =  +oo )
160158, 159breqtrrd 4230 . . . . 5  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
161 0xr 9123 . . . . . . . . . . 11  |-  0  e.  RR*
162161a1i 11 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  e.  RR* )
163100rexrd 9126 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  e. 
RR* )
16452absge0d 12238 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  ( abs `  ( P  -  A )
) )
165162, 163, 14, 164, 98xrlelttrd 10742 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <  R )
166 xrltle 10734 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
167161, 14, 166sylancr 645 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <  R  ->  0  <_  R ) )
168165, 167mpd 15 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  R )
169 ge0nemnf 10753 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  0  <_  R )  ->  R  =/=  -oo )
17014, 168, 169syl2anc 643 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  R  =/=  -oo )
17114, 170jca 519 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( R  e.  RR*  /\  R  =/=  -oo ) )
172 xrnemnf 10710 . . . . . 6  |-  ( ( R  e.  RR*  /\  R  =/=  -oo )  <->  ( R  e.  RR  \/  R  = 
+oo ) )
173171, 172sylib 189 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( R  e.  RR  \/  R  =  +oo ) )
174155, 160, 173mpjaodan 762 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
17551, 174eqbrtrd 4224 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R )
176 elbl 18410 . . . 4  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  (
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  ( P ( ball `  ( abs  o.  -  ) ) R )  <->  ( (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC  /\  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R ) ) )
17712, 13, 14, 176syl3anc 1184 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  ( P ( ball `  ( abs  o.  -  ) ) R )  <->  ( (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC  /\  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R ) ) )
17830, 175, 177mpbir2and 889 . 2  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( P (
ball `  ( abs  o. 
-  ) ) R ) )
179178, 9syl6eleqr 2526 1  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204    o. ccom 4874   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    +oocpnf 9109    -oocmnf 9110   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283   [,]cicc 10911   abscabs 12031   * Metcxmt 16678   ballcbl 16680
This theorem is referenced by:  dvlipcn  19870  blscon  24923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-xadd 10703  df-icc 10915  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689
  Copyright terms: Public domain W3C validator