MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrn Unicode version

Theorem blelrn 18342
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blelrn  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )

Proof of Theorem blelrn
StepHypRef Expression
1 blf 18336 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
2 ffn 5532 . . 3  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
31, 2syl 16 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D )  Fn  ( X  X.  RR* ) )
4 fnovrn 6161 . 2  |-  ( ( ( ball `  D
)  Fn  ( X  X.  RR* )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  e. 
ran  ( ball `  D
) )
53, 4syl3an1 1217 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    e. wcel 1717   ~Pcpw 3743    X. cxp 4817   ran crn 4820    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   RR*cxr 9053   * Metcxmt 16613   ballcbl 16615
This theorem is referenced by:  unirnbl  18344  blssex  18348  blopn  18421  blcld  18426  metss  18429  metcnp3  18461  dscopn  18493  ioo2blex  18697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-map 6957  df-xr 9058  df-xmet 16620  df-bl 16622
  Copyright terms: Public domain W3C validator