MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blf Structured version   Unicode version

Theorem blf 18438
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blf  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )

Proof of Theorem blf
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3429 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
2 elfvdm 5758 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
3 elpw2g 4364 . . . . . . 7  |-  ( X  e.  dom  * Met  ->  ( { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X 
<->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
42, 3syl 16 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  | 
( x D y )  <  r } 
C_  X ) )
51, 4mpbiri 226 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X )
65a1d 24 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  (
( x  e.  X  /\  r  e.  RR* )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X
) )
76ralrimivv 2798 . . 3  |-  ( D  e.  ( * Met `  X )  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
8 eqid 2437 . . . 4  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
98fmpt2 6419 . . 3  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
107, 9sylib 190 . 2  |-  ( D  e.  ( * Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X )
11 blfval 18415 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
1211feq1d 5581 . 2  |-  ( D  e.  ( * Met `  X )  ->  (
( ball `  D ) : ( X  X.  RR* ) --> ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X ) )
1310, 12mpbird 225 1  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726   A.wral 2706   {crab 2710    C_ wss 3321   ~Pcpw 3800   class class class wbr 4213    X. cxp 4877   dom cdm 4879   -->wf 5451   ` cfv 5455  (class class class)co 6082    e. cmpt2 6084   RR*cxr 9120    < clt 9121   * Metcxmt 16687   ballcbl 16689
This theorem is referenced by:  blrn  18440  blelrn  18448  blssm  18449  unirnbl  18451  blin2  18460  imasf1oxms  18520  iscau2  19231  ismtyhmeolem  26514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-map 7021  df-xr 9125  df-psmet 16695  df-xmet 16696  df-bl 16698
  Copyright terms: Public domain W3C validator