MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin Unicode version

Theorem blin 17986
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )

Proof of Theorem blin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xmetcl 17912 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
213expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
32adantlr 695 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( P D x )  e.  RR* )
4 simplrl 736 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  R  e.  RR* )
5 simplrr 737 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  S  e.  RR* )
6 xrltmin 10527 . . . . 5  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  S  e. 
RR* )  ->  (
( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
73, 4, 5, 6syl3anc 1182 . . . 4  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( ( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
87pm5.32da 622 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
9 ifcl 3614 . . . 4  |-  ( ( R  e.  RR*  /\  S  e.  RR* )  ->  if ( R  <_  S ,  R ,  S )  e.  RR* )
10 elbl 17965 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) if ( R  <_  S ,  R ,  S )
)  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
11103expa 1151 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
129, 11sylan2 460 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
13 elbl 17965 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
14133expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1514adantrr 697 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
16 elbl 17965 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
17163expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1817adantrl 696 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1915, 18anbi12d 691 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) )  <-> 
( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) ) )
20 elin 3371 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( P ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) ) )
21 anandi 801 . . . 4  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( P D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) )
2219, 20, 213bitr4g 279 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
238, 12, 223bitr4rd 277 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) ) ) )
2423eqrdv 2294 1  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    i^i cin 3164   ifcif 3578   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RR*cxr 8882    < clt 8883    <_ cle 8884   * Metcxmt 16385   ballcbl 16387
This theorem is referenced by:  blin2  17991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-xmet 16389  df-bl 16391
  Copyright terms: Public domain W3C validator