MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin Unicode version

Theorem blin 17970
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )

Proof of Theorem blin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xmetcl 17896 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
213expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
32adantlr 695 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( P D x )  e.  RR* )
4 simplrl 736 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  R  e.  RR* )
5 simplrr 737 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  S  e.  RR* )
6 xrltmin 10511 . . . . 5  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  S  e. 
RR* )  ->  (
( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
73, 4, 5, 6syl3anc 1182 . . . 4  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( ( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
87pm5.32da 622 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
9 ifcl 3601 . . . 4  |-  ( ( R  e.  RR*  /\  S  e.  RR* )  ->  if ( R  <_  S ,  R ,  S )  e.  RR* )
10 elbl 17949 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) if ( R  <_  S ,  R ,  S )
)  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
11103expa 1151 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
129, 11sylan2 460 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
13 elbl 17949 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
14133expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1514adantrr 697 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
16 elbl 17949 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
17163expa 1151 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1817adantrl 696 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1915, 18anbi12d 691 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) )  <-> 
( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) ) )
20 elin 3358 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( P ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) ) )
21 anandi 801 . . . 4  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( P D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) )
2219, 20, 213bitr4g 279 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
238, 12, 223bitr4rd 277 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) ) ) )
2423eqrdv 2281 1  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151   ifcif 3565   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867    <_ cle 8868   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  blin2  17975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-xmet 16373  df-bl 16375
  Copyright terms: Public domain W3C validator