MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bln0 Unicode version

Theorem bln0 18018
Description: A ball is not empty. (Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
bln0  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  =/=  (/) )

Proof of Theorem bln0
StepHypRef Expression
1 blcntr 18016 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) R ) )
2 ne0i 3495 . 2  |-  ( P  e.  ( P (
ball `  D ) R )  ->  ( P ( ball `  D
) R )  =/=  (/) )
31, 2syl 15 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    e. wcel 1701    =/= wne 2479   (/)c0 3489   ` cfv 5292  (class class class)co 5900   RR+crp 10401   * Metcxmt 16418   ballcbl 16420
This theorem is referenced by:  bcthlem5  18803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-map 6817  df-xr 8916  df-rp 10402  df-xmet 16425  df-bl 16427
  Copyright terms: Public domain W3C validator