MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Unicode version

Theorem blocnilem 21398
Description: Lemma for blocni 21399 and lnocni 21400. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8  |-  C  =  ( IndMet `  U )
blocni.d  |-  D  =  ( IndMet `  W )
blocni.j  |-  J  =  ( MetOpen `  C )
blocni.k  |-  K  =  ( MetOpen `  D )
blocni.4  |-  L  =  ( U  LnOp  W
)
blocni.5  |-  B  =  ( U  BLnOp  W )
blocni.u  |-  U  e.  NrmCVec
blocni.w  |-  W  e.  NrmCVec
blocni.l  |-  T  e.  L
blocnilem.1  |-  X  =  ( BaseSet `  U )
Assertion
Ref Expression
blocnilem  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  T  e.  B )

Proof of Theorem blocnilem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6  |-  U  e.  NrmCVec
2 blocnilem.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 blocni.8 . . . . . . 7  |-  C  =  ( IndMet `  U )
42, 3imsxmet 21277 . . . . . 6  |-  ( U  e.  NrmCVec  ->  C  e.  ( * Met `  X
) )
51, 4ax-mp 8 . . . . 5  |-  C  e.  ( * Met `  X
)
6 blocni.w . . . . . 6  |-  W  e.  NrmCVec
7 eqid 2296 . . . . . . 7  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
8 blocni.d . . . . . . 7  |-  D  =  ( IndMet `  W )
97, 8imsxmet 21277 . . . . . 6  |-  ( W  e.  NrmCVec  ->  D  e.  ( * Met `  ( BaseSet
`  W ) ) )
106, 9ax-mp 8 . . . . 5  |-  D  e.  ( * Met `  ( BaseSet
`  W ) )
11 1rp 10374 . . . . . 6  |-  1  e.  RR+
12 blocni.j . . . . . . 7  |-  J  =  ( MetOpen `  C )
13 blocni.k . . . . . . 7  |-  K  =  ( MetOpen `  D )
1412, 13metcnpi3 18108 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  ( BaseSet
`  W ) ) )  /\  ( T  e.  ( ( J  CnP  K ) `  P )  /\  1  e.  RR+ ) )  ->  E. y  e.  RR+  A. x  e.  X  ( (
x C P )  <_  y  ->  (
( T `  x
) D ( T `
 P ) )  <_  1 ) )
1511, 14mpanr2 665 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  ( BaseSet
`  W ) ) )  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  E. y  e.  RR+  A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 ) )
165, 10, 15mpanl12 663 . . . 4  |-  ( T  e.  ( ( J  CnP  K ) `  P )  ->  E. y  e.  RR+  A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 ) )
17 rpreccl 10393 . . . . . . . . 9  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
1817rpred 10406 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR )
1918ad2antlr 707 . . . . . . 7  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  ( 1  /  y )  e.  RR )
20 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( -v
`  U )  =  ( -v `  U
)
21 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( normCV `  U )  =  (
normCV
`  U )
222, 20, 21, 3imsdval 21271 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  P  e.  X )  ->  (
x C P )  =  ( ( normCV `  U ) `  (
x ( -v `  U ) P ) ) )
231, 22mp3an1 1264 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( x C P )  =  ( (
normCV
`  U ) `  ( x ( -v
`  U ) P ) ) )
2423breq1d 4049 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( x C P )  <_  y  <->  ( ( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y
) )
25 blocni.l . . . . . . . . . . . . . . . . . 18  |-  T  e.  L
26 blocni.4 . . . . . . . . . . . . . . . . . . 19  |-  L  =  ( U  LnOp  W
)
272, 7, 26lnof 21349 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
281, 6, 25, 27mp3an 1277 . . . . . . . . . . . . . . . . 17  |-  T : X
--> ( BaseSet `  W )
2928ffvelrni 5680 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  ->  ( T `  x )  e.  ( BaseSet `  W )
)
3028ffvelrni 5680 . . . . . . . . . . . . . . . 16  |-  ( P  e.  X  ->  ( T `  P )  e.  ( BaseSet `  W )
)
31 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( -v
`  W )  =  ( -v `  W
)
32 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( normCV `  W )  =  (
normCV
`  W )
337, 31, 32, 8imsdval 21271 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  NrmCVec  /\  ( T `  x )  e.  ( BaseSet `  W )  /\  ( T `  P
)  e.  ( BaseSet `  W ) )  -> 
( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( ( T `  x ) ( -v
`  W ) ( T `  P ) ) ) )
346, 33mp3an1 1264 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  ( BaseSet `  W )  /\  ( T `  P )  e.  ( BaseSet `  W )
)  ->  ( ( T `  x ) D ( T `  P ) )  =  ( ( normCV `  W
) `  ( ( T `  x )
( -v `  W
) ( T `  P ) ) ) )
3529, 30, 34syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( ( T `  x ) ( -v
`  W ) ( T `  P ) ) ) )
361, 6, 253pm3.2i 1130 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )
372, 20, 31, 26lnosub 21353 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
x  e.  X  /\  P  e.  X )
)  ->  ( T `  ( x ( -v
`  U ) P ) )  =  ( ( T `  x
) ( -v `  W ) ( T `
 P ) ) )
3836, 37mpan 651 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( T `  (
x ( -v `  U ) P ) )  =  ( ( T `  x ) ( -v `  W
) ( T `  P ) ) )
3938fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  =  ( ( normCV `  W
) `  ( ( T `  x )
( -v `  W
) ( T `  P ) ) ) )
4035, 39eqtr4d 2331 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( T `  ( x ( -v `  U
) P ) ) ) )
4140breq1d 4049 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( ( T `
 x ) D ( T `  P
) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )
4224, 41imbi12d 311 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4342ancoms 439 . . . . . . . . . . 11  |-  ( ( P  e.  X  /\  x  e.  X )  ->  ( ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4443adantlr 695 . . . . . . . . . 10  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  x  e.  X
)  ->  ( (
( x C P )  <_  y  ->  ( ( T `  x
) D ( T `
 P ) )  <_  1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4544ralbidva 2572 . . . . . . . . 9  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  A. x  e.  X  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
46 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( z  =  ( 0vec `  U
)  ->  ( T `  z )  =  ( T `  ( 0vec `  U ) ) )
4746fveq2d 5545 . . . . . . . . . . . . 13  |-  ( z  =  ( 0vec `  U
)  ->  ( ( normCV `  W ) `  ( T `  z )
)  =  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) ) )
48 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( z  =  ( 0vec `  U
)  ->  ( ( normCV `  U ) `  z
)  =  ( (
normCV
`  U ) `  ( 0vec `  U )
) )
4948oveq2d 5890 . . . . . . . . . . . . 13  |-  ( z  =  ( 0vec `  U
)  ->  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  =  ( ( 1  /  y
)  x.  ( (
normCV
`  U ) `  ( 0vec `  U )
) ) )
5047, 49breq12d 4052 . . . . . . . . . . . 12  |-  ( z  =  ( 0vec `  U
)  ->  ( (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  <->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) ) )
511a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  U  e.  NrmCVec )
52 simpll 730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  P  e.  X )
53 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
542, 21nvcl 21241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( normCV `  U ) `  z )  e.  RR )
551, 54mpan 651 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  X  ->  (
( normCV `  U ) `  z )  e.  RR )
5655adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  e.  RR )
57 eqid 2296 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0vec `  U )  =  (
0vec `  U )
582, 57, 21nvgt0 21257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
z  =/=  ( 0vec `  U )  <->  0  <  ( ( normCV `  U ) `  z ) ) )
591, 58mpan 651 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  X  ->  (
z  =/=  ( 0vec `  U )  <->  0  <  ( ( normCV `  U ) `  z ) ) )
6059biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  0  <  ( ( normCV `  U
) `  z )
)
6156, 60elrpd 10404 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  e.  RR+ )
62 rpdivcl 10392 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  RR+  /\  (
( normCV `  U ) `  z )  e.  RR+ )  ->  ( y  / 
( ( normCV `  U
) `  z )
)  e.  RR+ )
6353, 61, 62syl2an 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( y  /  ( ( normCV `  U ) `  z
) )  e.  RR+ )
6463rpcnd 10408 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( y  /  ( ( normCV `  U ) `  z
) )  e.  CC )
65 simprl 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  z  e.  X )
66 eqid 2296 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
672, 66nvscl 21200 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( U  e.  NrmCVec  /\  (
y  /  ( (
normCV
`  U ) `  z ) )  e.  CC  /\  z  e.  X )  ->  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )
6851, 64, 65, 67syl3anc 1182 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )
69 eqid 2296 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( +v
`  U )  =  ( +v `  U
)
702, 69, 20nvpncan2 21230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )  ->  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P )  =  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )
7151, 52, 68, 70syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P )  =  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )
7271fveq2d 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  =  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) )
7363rprege0d 10413 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) ) )
742, 66, 21nvsge0 21245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) )  /\  z  e.  X
)  ->  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  U ) `  z ) ) )
7551, 73, 65, 74syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  U ) `  z ) ) )
76 rpcn 10378 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  y  e.  CC )
7776ad2antlr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  e.  CC )
7855ad2antrl 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  e.  RR )
7978recnd 8877 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  e.  CC )
802, 57, 21nvz 21251 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( ( normCV `  U
) `  z )  =  0  <->  z  =  ( 0vec `  U )
) )
811, 80mpan 651 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  X  ->  (
( ( normCV `  U
) `  z )  =  0  <->  z  =  ( 0vec `  U )
) )
8281necon3bid 2494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  X  ->  (
( ( normCV `  U
) `  z )  =/=  0  <->  z  =/=  ( 0vec `  U ) ) )
8382biimpar 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  =/=  0
)
8483adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  =/=  0 )
8577, 79, 84divcan1d 9553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  U
) `  z )
)  =  y )
8672, 75, 853eqtrd 2332 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  =  y )
87 rpre 10376 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR+  ->  y  e.  RR )
8887leidd 9355 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  <_ 
y )
8988ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  <_  y )
9086, 89eqbrtrd 4059 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  <_  y )
912, 69nvgcl 21192 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )  ->  ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  e.  X )
9251, 52, 68, 91syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( P
( +v `  U
) ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  U )
z ) )  e.  X )
93 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( x
( -v `  U
) P )  =  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )
9493fveq2d 5545 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  =  ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) ) )
9594breq1d 4049 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  <->  ( ( normCV `  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y )
)
9693fveq2d 5545 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( T `  ( x ( -v
`  U ) P ) )  =  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )
9796fveq2d 5545 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( ( normCV `  W ) `  ( T `  ( x
( -v `  U
) P ) ) )  =  ( (
normCV
`  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) ) )
9897breq1d 4049 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) )
9995, 98imbi12d 311 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  <-> 
( ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10099rspcv 2893 . . . . . . . . . . . . . . . . . 18  |-  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  e.  X  ->  ( A. x  e.  X  ( ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10192, 100syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10290, 101mpid 37 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) )
10328ffvelrni 5680 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  X  ->  ( T `  z )  e.  ( BaseSet `  W )
)
1047, 32nvcl 21241 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  NrmCVec  /\  ( T `  z )  e.  ( BaseSet `  W )
)  ->  ( ( normCV `  W ) `  ( T `  z )
)  e.  RR )
1056, 103, 104sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  X  ->  (
( normCV `  W ) `  ( T `  z ) )  e.  RR )
106105ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  e.  RR )
107 1re 8853 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
108107a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  1  e.  RR )
109106, 108, 63lemuldiv2d 10452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( y  /  (
( normCV `  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) ) ) )
11071fveq2d 5545 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  =  ( T `
 ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  U )
z ) ) )
111 eqid 2296 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
1122, 66, 111, 26lnomul 21354 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  CC  /\  z  e.  X ) )  -> 
( T `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  W )
( T `  z
) ) )
11336, 112mpan 651 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  /  (
( normCV `  U ) `  z ) )  e.  CC  /\  z  e.  X )  ->  ( T `  ( (
y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  W )
( T `  z
) ) )
11464, 65, 113syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )
115110, 114eqtrd 2328 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )
116115fveq2d 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  =  ( (
normCV
`  W ) `  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  W ) ( T `
 z ) ) ) )
1176a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  W  e.  NrmCVec )
118103ad2antrl 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  z )  e.  (
BaseSet `  W ) )
1197, 111, 32nvsge0 21245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  NrmCVec  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) )  /\  ( T `  z )  e.  (
BaseSet `  W ) )  ->  ( ( normCV `  W ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  W ) `  ( T `  z ) ) ) )
120117, 73, 118, 119syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  W ) `  ( T `  z ) ) ) )
121116, 120eqtrd 2328 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) ) )
122121breq1d 4049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1  <->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) )  <_  1 ) )
123 rpcnne0 10387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  ( y  e.  CC  /\  y  =/=  0 ) )
124 rpcnne0 10387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( normCV `  U ) `  z )  e.  RR+  ->  ( ( ( normCV `  U ) `  z
)  e.  CC  /\  ( ( normCV `  U
) `  z )  =/=  0 ) )
125 recdiv 9482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  CC  /\  y  =/=  0 )  /\  ( ( (
normCV
`  U ) `  z )  e.  CC  /\  ( ( normCV `  U
) `  z )  =/=  0 ) )  -> 
( 1  /  (
y  /  ( (
normCV
`  U ) `  z ) ) )  =  ( ( (
normCV
`  U ) `  z )  /  y
) )
126123, 124, 125syl2an 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
( normCV `  U ) `  z )  e.  RR+ )  ->  ( 1  / 
( y  /  (
( normCV `  U ) `  z ) ) )  =  ( ( (
normCV
`  U ) `  z )  /  y
) )
12753, 61, 126syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) )  =  ( ( ( normCV `  U
) `  z )  /  y ) )
128 rpne0 10385 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  y  =/=  0 )
129128ad2antlr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  =/=  0 )
13079, 77, 129divrec2d 9556 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  U ) `  z )  /  y
)  =  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
131127, 130eqtr2d 2329 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  =  ( 1  /  ( y  /  ( ( normCV `  U ) `  z
) ) ) )
132131breq2d 4051 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) ) ) )
133109, 122, 1323bitr4d 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
134102, 133sylibd 205 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
135134anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  z  =/=  ( 0vec `  U
) )  ->  ( A. x  e.  X  ( ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
136135imp 418 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  z  =/=  ( 0vec `  U
) )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
137136an32s 779 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
138 eqid 2296 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0vec `  W )  =  (
0vec `  W )
1392, 7, 57, 138, 26lno0 21350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  ( 0vec `  U ) )  =  ( 0vec `  W
) )
1401, 6, 25, 139mp3an 1277 . . . . . . . . . . . . . . . . . 18  |-  ( T `
 ( 0vec `  U
) )  =  (
0vec `  W )
141140fveq2i 5544 . . . . . . . . . . . . . . . . 17  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  =  ( ( normCV `  W ) `  ( 0vec `  W ) )
142138, 32nvz0 21250 . . . . . . . . . . . . . . . . . 18  |-  ( W  e.  NrmCVec  ->  ( ( normCV `  W ) `  ( 0vec `  W ) )  =  0 )
1436, 142ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( (
normCV
`  W ) `  ( 0vec `  W )
)  =  0
144141, 143eqtri 2316 . . . . . . . . . . . . . . . 16  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  =  0
145 0le0 9843 . . . . . . . . . . . . . . . 16  |-  0  <_  0
146144, 145eqbrtri 4058 . . . . . . . . . . . . . . 15  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  <_  0
14717rpcnd 10408 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  CC )
14857, 21nvz0 21250 . . . . . . . . . . . . . . . . . . 19  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  U ) `  ( 0vec `  U ) )  =  0 )
1491, 148ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( (
normCV
`  U ) `  ( 0vec `  U )
)  =  0
150149oveq2i 5885 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  ( 0vec `  U ) ) )  =  ( ( 1  /  y )  x.  0 )
151 mul01 9007 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  y )  e.  CC  ->  (
( 1  /  y
)  x.  0 )  =  0 )
152150, 151syl5eq 2340 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  y )  e.  CC  ->  (
( 1  /  y
)  x.  ( (
normCV
`  U ) `  ( 0vec `  U )
) )  =  0 )
153147, 152syl 15 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  ( 0vec `  U ) ) )  =  0 )
154146, 153syl5breqr 4075 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) )
155154adantl 452 . . . . . . . . . . . . 13  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( ( normCV `  W
) `  ( T `  ( 0vec `  U
) ) )  <_ 
( ( 1  / 
y )  x.  (
( normCV `  U ) `  ( 0vec `  U )
) ) )
156155ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) )
15750, 137, 156pm2.61ne 2534 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
158157ex 423 . . . . . . . . . 10  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X
)  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
159158ralrimdva 2646 . . . . . . . . 9  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( (
normCV
`  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
16045, 159sylbid 206 . . . . . . . 8  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
161160imp 418 . . . . . . 7  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
162 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  ( 1  / 
y )  ->  (
x  x.  ( (
normCV
`  U ) `  z ) )  =  ( ( 1  / 
y )  x.  (
( normCV `  U ) `  z ) ) )
163162breq2d 4051 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
( ( normCV `  W
) `  ( T `  z ) )  <_ 
( x  x.  (
( normCV `  U ) `  z ) )  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
164163ralbidv 2576 . . . . . . . 8  |-  ( x  =  ( 1  / 
y )  ->  ( A. z  e.  X  ( ( normCV `  W
) `  ( T `  z ) )  <_ 
( x  x.  (
( normCV `  U ) `  z ) )  <->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
165164rspcev 2897 . . . . . . 7  |-  ( ( ( 1  /  y
)  e.  RR  /\  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
16619, 161, 165syl2anc 642 . . . . . 6  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
167166ex 423 . . . . 5  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
168167rexlimdva 2680 . . . 4  |-  ( P  e.  X  ->  ( E. y  e.  RR+  A. x  e.  X  ( (
x C P )  <_  y  ->  (
( T `  x
) D ( T `
 P ) )  <_  1 )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
16916, 168syl5 28 . . 3  |-  ( P  e.  X  ->  ( T  e.  ( ( J  CnP  K ) `  P )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
170169imp 418 . 2  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
171 blocni.5 . . . 4  |-  B  =  ( U  BLnOp  W )
1722, 21, 32, 26, 171, 1, 6isblo3i 21395 . . 3  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
17325, 172mpbiran 884 . 2  |-  ( T  e.  B  <->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
174170, 173sylibr 203 1  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   class class class wbr 4039   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   RR+crp 10370   * Metcxmt 16385   MetOpencmopn 16388    CnP ccnp 16971   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s OLDcns 21159   0veccn0v 21160   -vcnsb 21161   normCVcnmcv 21162   IndMetcims 21163    LnOp clno 21334    BLnOp cblo 21336
This theorem is referenced by:  blocni  21399  lnocni  21400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cnp 16974  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-lno 21338  df-nmoo 21339  df-blo 21340  df-0o 21341
  Copyright terms: Public domain W3C validator