MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Unicode version

Theorem blocnilem 22297
Description: Lemma for blocni 22298 and lnocni 22299. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8  |-  C  =  ( IndMet `  U )
blocni.d  |-  D  =  ( IndMet `  W )
blocni.j  |-  J  =  ( MetOpen `  C )
blocni.k  |-  K  =  ( MetOpen `  D )
blocni.4  |-  L  =  ( U  LnOp  W
)
blocni.5  |-  B  =  ( U  BLnOp  W )
blocni.u  |-  U  e.  NrmCVec
blocni.w  |-  W  e.  NrmCVec
blocni.l  |-  T  e.  L
blocnilem.1  |-  X  =  ( BaseSet `  U )
Assertion
Ref Expression
blocnilem  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  T  e.  B )

Proof of Theorem blocnilem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6  |-  U  e.  NrmCVec
2 blocnilem.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 blocni.8 . . . . . . 7  |-  C  =  ( IndMet `  U )
42, 3imsxmet 22176 . . . . . 6  |-  ( U  e.  NrmCVec  ->  C  e.  ( * Met `  X
) )
51, 4ax-mp 8 . . . . 5  |-  C  e.  ( * Met `  X
)
6 blocni.w . . . . . 6  |-  W  e.  NrmCVec
7 eqid 2435 . . . . . . 7  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
8 blocni.d . . . . . . 7  |-  D  =  ( IndMet `  W )
97, 8imsxmet 22176 . . . . . 6  |-  ( W  e.  NrmCVec  ->  D  e.  ( * Met `  ( BaseSet
`  W ) ) )
106, 9ax-mp 8 . . . . 5  |-  D  e.  ( * Met `  ( BaseSet
`  W ) )
11 1rp 10608 . . . . . 6  |-  1  e.  RR+
12 blocni.j . . . . . . 7  |-  J  =  ( MetOpen `  C )
13 blocni.k . . . . . . 7  |-  K  =  ( MetOpen `  D )
1412, 13metcnpi3 18568 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  ( BaseSet
`  W ) ) )  /\  ( T  e.  ( ( J  CnP  K ) `  P )  /\  1  e.  RR+ ) )  ->  E. y  e.  RR+  A. x  e.  X  ( (
x C P )  <_  y  ->  (
( T `  x
) D ( T `
 P ) )  <_  1 ) )
1511, 14mpanr2 666 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  ( BaseSet
`  W ) ) )  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  E. y  e.  RR+  A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 ) )
165, 10, 15mpanl12 664 . . . 4  |-  ( T  e.  ( ( J  CnP  K ) `  P )  ->  E. y  e.  RR+  A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 ) )
17 rpreccl 10627 . . . . . . . . 9  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
1817rpred 10640 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR )
1918ad2antlr 708 . . . . . . 7  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  ( 1  /  y )  e.  RR )
20 eqid 2435 . . . . . . . . . . . . . . . 16  |-  ( -v
`  U )  =  ( -v `  U
)
21 eqid 2435 . . . . . . . . . . . . . . . 16  |-  ( normCV `  U )  =  (
normCV
`  U )
222, 20, 21, 3imsdval 22170 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  P  e.  X )  ->  (
x C P )  =  ( ( normCV `  U ) `  (
x ( -v `  U ) P ) ) )
231, 22mp3an1 1266 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( x C P )  =  ( (
normCV
`  U ) `  ( x ( -v
`  U ) P ) ) )
2423breq1d 4214 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( x C P )  <_  y  <->  ( ( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y
) )
25 blocni.l . . . . . . . . . . . . . . . . . 18  |-  T  e.  L
26 blocni.4 . . . . . . . . . . . . . . . . . . 19  |-  L  =  ( U  LnOp  W
)
272, 7, 26lnof 22248 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
281, 6, 25, 27mp3an 1279 . . . . . . . . . . . . . . . . 17  |-  T : X
--> ( BaseSet `  W )
2928ffvelrni 5861 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  ->  ( T `  x )  e.  ( BaseSet `  W )
)
3028ffvelrni 5861 . . . . . . . . . . . . . . . 16  |-  ( P  e.  X  ->  ( T `  P )  e.  ( BaseSet `  W )
)
31 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( -v
`  W )  =  ( -v `  W
)
32 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( normCV `  W )  =  (
normCV
`  W )
337, 31, 32, 8imsdval 22170 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  NrmCVec  /\  ( T `  x )  e.  ( BaseSet `  W )  /\  ( T `  P
)  e.  ( BaseSet `  W ) )  -> 
( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( ( T `  x ) ( -v
`  W ) ( T `  P ) ) ) )
346, 33mp3an1 1266 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  ( BaseSet `  W )  /\  ( T `  P )  e.  ( BaseSet `  W )
)  ->  ( ( T `  x ) D ( T `  P ) )  =  ( ( normCV `  W
) `  ( ( T `  x )
( -v `  W
) ( T `  P ) ) ) )
3529, 30, 34syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( ( T `  x ) ( -v
`  W ) ( T `  P ) ) ) )
361, 6, 253pm3.2i 1132 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )
372, 20, 31, 26lnosub 22252 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
x  e.  X  /\  P  e.  X )
)  ->  ( T `  ( x ( -v
`  U ) P ) )  =  ( ( T `  x
) ( -v `  W ) ( T `
 P ) ) )
3836, 37mpan 652 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( T `  (
x ( -v `  U ) P ) )  =  ( ( T `  x ) ( -v `  W
) ( T `  P ) ) )
3938fveq2d 5724 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  =  ( ( normCV `  W
) `  ( ( T `  x )
( -v `  W
) ( T `  P ) ) ) )
4035, 39eqtr4d 2470 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( T `  x ) D ( T `  P ) )  =  ( (
normCV
`  W ) `  ( T `  ( x ( -v `  U
) P ) ) ) )
4140breq1d 4214 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( ( T `
 x ) D ( T `  P
) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )
4224, 41imbi12d 312 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  P  e.  X )  ->  ( ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4342ancoms 440 . . . . . . . . . . 11  |-  ( ( P  e.  X  /\  x  e.  X )  ->  ( ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4443adantlr 696 . . . . . . . . . 10  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  x  e.  X
)  ->  ( (
( x C P )  <_  y  ->  ( ( T `  x
) D ( T `
 P ) )  <_  1 )  <->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
4544ralbidva 2713 . . . . . . . . 9  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  <->  A. x  e.  X  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 ) ) )
46 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( z  =  ( 0vec `  U
)  ->  ( T `  z )  =  ( T `  ( 0vec `  U ) ) )
4746fveq2d 5724 . . . . . . . . . . . . 13  |-  ( z  =  ( 0vec `  U
)  ->  ( ( normCV `  W ) `  ( T `  z )
)  =  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) ) )
48 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( z  =  ( 0vec `  U
)  ->  ( ( normCV `  U ) `  z
)  =  ( (
normCV
`  U ) `  ( 0vec `  U )
) )
4948oveq2d 6089 . . . . . . . . . . . . 13  |-  ( z  =  ( 0vec `  U
)  ->  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  =  ( ( 1  /  y
)  x.  ( (
normCV
`  U ) `  ( 0vec `  U )
) ) )
5047, 49breq12d 4217 . . . . . . . . . . . 12  |-  ( z  =  ( 0vec `  U
)  ->  ( (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  <->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) ) )
511a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  U  e.  NrmCVec )
52 simpll 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  P  e.  X )
53 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
542, 21nvcl 22140 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( normCV `  U ) `  z )  e.  RR )
551, 54mpan 652 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  X  ->  (
( normCV `  U ) `  z )  e.  RR )
5655adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  e.  RR )
57 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0vec `  U )  =  (
0vec `  U )
582, 57, 21nvgt0 22156 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
z  =/=  ( 0vec `  U )  <->  0  <  ( ( normCV `  U ) `  z ) ) )
591, 58mpan 652 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  X  ->  (
z  =/=  ( 0vec `  U )  <->  0  <  ( ( normCV `  U ) `  z ) ) )
6059biimpa 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  0  <  ( ( normCV `  U
) `  z )
)
6156, 60elrpd 10638 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  e.  RR+ )
62 rpdivcl 10626 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  RR+  /\  (
( normCV `  U ) `  z )  e.  RR+ )  ->  ( y  / 
( ( normCV `  U
) `  z )
)  e.  RR+ )
6353, 61, 62syl2an 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( y  /  ( ( normCV `  U ) `  z
) )  e.  RR+ )
6463rpcnd 10642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( y  /  ( ( normCV `  U ) `  z
) )  e.  CC )
65 simprl 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  z  e.  X )
66 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
672, 66nvscl 22099 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( U  e.  NrmCVec  /\  (
y  /  ( (
normCV
`  U ) `  z ) )  e.  CC  /\  z  e.  X )  ->  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )
6851, 64, 65, 67syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )
69 eqid 2435 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( +v
`  U )  =  ( +v `  U
)
702, 69, 20nvpncan2 22129 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )  ->  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P )  =  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )
7151, 52, 68, 70syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P )  =  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )
7271fveq2d 5724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  =  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) )
7363rprege0d 10647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) ) )
742, 66, 21nvsge0 22144 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) )  /\  z  e.  X
)  ->  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  U ) `  z ) ) )
7551, 73, 65, 74syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  U ) `  z ) ) )
76 rpcn 10612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  y  e.  CC )
7776ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  e.  CC )
7855ad2antrl 709 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  e.  RR )
7978recnd 9106 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  e.  CC )
802, 57, 21nvz 22150 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( ( normCV `  U
) `  z )  =  0  <->  z  =  ( 0vec `  U )
) )
811, 80mpan 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  X  ->  (
( ( normCV `  U
) `  z )  =  0  <->  z  =  ( 0vec `  U )
) )
8281necon3bid 2633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  X  ->  (
( ( normCV `  U
) `  z )  =/=  0  <->  z  =/=  ( 0vec `  U ) ) )
8382biimpar 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  X  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  U ) `  z )  =/=  0
)
8483adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  z
)  =/=  0 )
8577, 79, 84divcan1d 9783 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  U
) `  z )
)  =  y )
8672, 75, 853eqtrd 2471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  =  y )
87 rpre 10610 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR+  ->  y  e.  RR )
8887leidd 9585 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  <_ 
y )
8988ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  <_  y )
9086, 89eqbrtrd 4224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  <_  y )
912, 69nvgcl 22091 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z )  e.  X )  ->  ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  e.  X )
9251, 52, 68, 91syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( P
( +v `  U
) ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  U )
z ) )  e.  X )
93 oveq1 6080 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( x
( -v `  U
) P )  =  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )
9493fveq2d 5724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  =  ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) ) )
9594breq1d 4214 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( normCV `  U ) `  ( x ( -v
`  U ) P ) )  <_  y  <->  ( ( normCV `  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y )
)
9693fveq2d 5724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( T `  ( x ( -v
`  U ) P ) )  =  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )
9796fveq2d 5724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( ( normCV `  W ) `  ( T `  ( x
( -v `  U
) P ) ) )  =  ( (
normCV
`  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) ) )
9897breq1d 4214 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) )
9995, 98imbi12d 312 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  ->  ( (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  <-> 
( ( ( normCV `  U ) `  (
( P ( +v
`  U ) ( ( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10099rspcv 3040 . . . . . . . . . . . . . . . . . 18  |-  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  e.  X  ->  ( A. x  e.  X  ( ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10192, 100syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( (
normCV
`  U ) `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) ) )
10290, 101mpid 39 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1 ) )
10328ffvelrni 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  X  ->  ( T `  z )  e.  ( BaseSet `  W )
)
1047, 32nvcl 22140 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  NrmCVec  /\  ( T `  z )  e.  ( BaseSet `  W )
)  ->  ( ( normCV `  W ) `  ( T `  z )
)  e.  RR )
1056, 103, 104sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  X  ->  (
( normCV `  W ) `  ( T `  z ) )  e.  RR )
106105ad2antrl 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  e.  RR )
107 1re 9082 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
108107a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  1  e.  RR )
109106, 108, 63lemuldiv2d 10686 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( y  /  (
( normCV `  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) ) ) )
11071fveq2d 5724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  =  ( T `
 ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  U )
z ) ) )
111 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
1122, 66, 111, 26lnomul 22253 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  CC  /\  z  e.  X ) )  -> 
( T `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  W )
( T `  z
) ) )
11336, 112mpan 652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  /  (
( normCV `  U ) `  z ) )  e.  CC  /\  z  e.  X )  ->  ( T `  ( (
y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) ) ( .s
OLD `  W )
( T `  z
) ) )
11464, 65, 113syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )
115110, 114eqtrd 2467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  ( ( P ( +v `  U ) ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  U ) z ) ) ( -v `  U ) P ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )
116115fveq2d 5724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  =  ( (
normCV
`  W ) `  ( ( y  / 
( ( normCV `  U
) `  z )
) ( .s OLD `  W ) ( T `
 z ) ) ) )
1176a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  W  e.  NrmCVec )
118103ad2antrl 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( T `  z )  e.  (
BaseSet `  W ) )
1197, 111, 32nvsge0 22144 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  NrmCVec  /\  (
( y  /  (
( normCV `  U ) `  z ) )  e.  RR  /\  0  <_ 
( y  /  (
( normCV `  U ) `  z ) ) )  /\  ( T `  z )  e.  (
BaseSet `  W ) )  ->  ( ( normCV `  W ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  W ) `  ( T `  z ) ) ) )
120117, 73, 118, 119syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  (
( y  /  (
( normCV `  U ) `  z ) ) ( .s OLD `  W
) ( T `  z ) ) )  =  ( ( y  /  ( ( normCV `  U ) `  z
) )  x.  (
( normCV `  W ) `  ( T `  z ) ) ) )
121116, 120eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( ( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  =  ( ( y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) ) )
122121breq1d 4214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1  <->  ( (
y  /  ( (
normCV
`  U ) `  z ) )  x.  ( ( normCV `  W
) `  ( T `  z ) ) )  <_  1 ) )
123 rpcnne0 10621 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  ( y  e.  CC  /\  y  =/=  0 ) )
124 rpcnne0 10621 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( normCV `  U ) `  z )  e.  RR+  ->  ( ( ( normCV `  U ) `  z
)  e.  CC  /\  ( ( normCV `  U
) `  z )  =/=  0 ) )
125 recdiv 9712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  CC  /\  y  =/=  0 )  /\  ( ( (
normCV
`  U ) `  z )  e.  CC  /\  ( ( normCV `  U
) `  z )  =/=  0 ) )  -> 
( 1  /  (
y  /  ( (
normCV
`  U ) `  z ) ) )  =  ( ( (
normCV
`  U ) `  z )  /  y
) )
126123, 124, 125syl2an 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
( normCV `  U ) `  z )  e.  RR+ )  ->  ( 1  / 
( y  /  (
( normCV `  U ) `  z ) ) )  =  ( ( (
normCV
`  U ) `  z )  /  y
) )
12753, 61, 126syl2an 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) )  =  ( ( ( normCV `  U
) `  z )  /  y ) )
128 rpne0 10619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  y  =/=  0 )
129128ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  y  =/=  0 )
13079, 77, 129divrec2d 9786 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  U ) `  z )  /  y
)  =  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
131127, 130eqtr2d 2468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  =  ( 1  /  ( y  /  ( ( normCV `  U ) `  z
) ) ) )
132131breq2d 4216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) )  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( 1  /  ( y  / 
( ( normCV `  U
) `  z )
) ) ) )
133109, 122, 1323bitr4d 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( (
( normCV `  W ) `  ( T `  ( ( P ( +v `  U ) ( ( y  /  ( (
normCV
`  U ) `  z ) ) ( .s OLD `  U
) z ) ) ( -v `  U
) P ) ) )  <_  1  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
134102, 133sylibd 206 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  ( z  e.  X  /\  z  =/=  ( 0vec `  U ) ) )  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
135134anassrs 630 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  z  =/=  ( 0vec `  U
) )  ->  ( A. x  e.  X  ( ( ( normCV `  U ) `  (
x ( -v `  U ) P ) )  <_  y  ->  ( ( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
136135imp 419 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  z  =/=  ( 0vec `  U
) )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
137136an32s 780 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  /\  z  =/=  ( 0vec `  U
) )  ->  (
( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
138 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( 0vec `  W )  =  (
0vec `  W )
1392, 7, 57, 138, 26lno0 22249 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  ( 0vec `  U ) )  =  ( 0vec `  W
) )
1401, 6, 25, 139mp3an 1279 . . . . . . . . . . . . . . . . 17  |-  ( T `
 ( 0vec `  U
) )  =  (
0vec `  W )
141140fveq2i 5723 . . . . . . . . . . . . . . . 16  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  =  ( ( normCV `  W ) `  ( 0vec `  W ) )
142138, 32nvz0 22149 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  NrmCVec  ->  ( ( normCV `  W ) `  ( 0vec `  W ) )  =  0 )
1436, 142ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( (
normCV
`  W ) `  ( 0vec `  W )
)  =  0
144141, 143eqtri 2455 . . . . . . . . . . . . . . 15  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  =  0
145 0le0 10073 . . . . . . . . . . . . . . 15  |-  0  <_  0
146144, 145eqbrtri 4223 . . . . . . . . . . . . . 14  |-  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  <_  0
14717rpcnd 10642 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  CC )
14857, 21nvz0 22149 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  U ) `  ( 0vec `  U ) )  =  0 )
1491, 148ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( (
normCV
`  U ) `  ( 0vec `  U )
)  =  0
150149oveq2i 6084 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  ( 0vec `  U ) ) )  =  ( ( 1  /  y )  x.  0 )
151 mul01 9237 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  y )  e.  CC  ->  (
( 1  /  y
)  x.  0 )  =  0 )
152150, 151syl5eq 2479 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  y )  e.  CC  ->  (
( 1  /  y
)  x.  ( (
normCV
`  U ) `  ( 0vec `  U )
) )  =  0 )
153147, 152syl 16 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( ( 1  /  y )  x.  ( ( normCV `  U ) `  ( 0vec `  U ) ) )  =  0 )
154146, 153syl5breqr 4240 . . . . . . . . . . . . 13  |-  ( y  e.  RR+  ->  ( (
normCV
`  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) )
155154ad3antlr 712 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( ( 1  /  y )  x.  ( ( normCV `  U
) `  ( 0vec `  U ) ) ) )
15650, 137, 155pm2.61ne 2673 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X )  /\  A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 ) )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
157156ex 424 . . . . . . . . . 10  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  z  e.  X
)  ->  ( A. x  e.  X  (
( ( normCV `  U
) `  ( x
( -v `  U
) P ) )  <_  y  ->  (
( normCV `  W ) `  ( T `  ( x ( -v `  U
) P ) ) )  <_  1 )  ->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
158157ralrimdva 2788 . . . . . . . . 9  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( (
normCV
`  U ) `  ( x ( -v
`  U ) P ) )  <_  y  ->  ( ( normCV `  W
) `  ( T `  ( x ( -v
`  U ) P ) ) )  <_ 
1 )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
15945, 158sylbid 207 . . . . . . . 8  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
160159imp 419 . . . . . . 7  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )
161 oveq1 6080 . . . . . . . . . 10  |-  ( x  =  ( 1  / 
y )  ->  (
x  x.  ( (
normCV
`  U ) `  z ) )  =  ( ( 1  / 
y )  x.  (
( normCV `  U ) `  z ) ) )
162161breq2d 4216 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
( ( normCV `  W
) `  ( T `  z ) )  <_ 
( x  x.  (
( normCV `  U ) `  z ) )  <->  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
163162ralbidv 2717 . . . . . . . 8  |-  ( x  =  ( 1  / 
y )  ->  ( A. z  e.  X  ( ( normCV `  W
) `  ( T `  z ) )  <_ 
( x  x.  (
( normCV `  U ) `  z ) )  <->  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) ) )
164163rspcev 3044 . . . . . . 7  |-  ( ( ( 1  /  y
)  e.  RR  /\  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( (
1  /  y )  x.  ( ( normCV `  U ) `  z
) ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
16519, 160, 164syl2anc 643 . . . . . 6  |-  ( ( ( P  e.  X  /\  y  e.  RR+ )  /\  A. x  e.  X  ( ( x C P )  <_  y  ->  ( ( T `  x ) D ( T `  P ) )  <_  1 ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
166165ex 424 . . . . 5  |-  ( ( P  e.  X  /\  y  e.  RR+ )  -> 
( A. x  e.  X  ( ( x C P )  <_ 
y  ->  ( ( T `  x ) D ( T `  P ) )  <_ 
1 )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
167166rexlimdva 2822 . . . 4  |-  ( P  e.  X  ->  ( E. y  e.  RR+  A. x  e.  X  ( (
x C P )  <_  y  ->  (
( T `  x
) D ( T `
 P ) )  <_  1 )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
16816, 167syl5 30 . . 3  |-  ( P  e.  X  ->  ( T  e.  ( ( J  CnP  K ) `  P )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
169168imp 419 . 2  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z ) )  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
170 blocni.5 . . . 4  |-  B  =  ( U  BLnOp  W )
1712, 21, 32, 26, 170, 1, 6isblo3i 22294 . . 3  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) ) )
17225, 171mpbiran 885 . 2  |-  ( T  e.  B  <->  E. x  e.  RR  A. z  e.  X  ( ( normCV `  W ) `  ( T `  z )
)  <_  ( x  x.  ( ( normCV `  U
) `  z )
) )
173169, 172sylibr 204 1  |-  ( ( P  e.  X  /\  T  e.  ( ( J  CnP  K ) `  P ) )  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   class class class wbr 4204   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    <_ cle 9113    / cdiv 9669   RR+crp 10604   * Metcxmt 16678   MetOpencmopn 16683    CnP ccnp 17281   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s OLDcns 22058   0veccn0v 22059   -vcnsb 22060   normCVcnmcv 22061   IndMetcims 22062    LnOp clno 22233    BLnOp cblo 22235
This theorem is referenced by:  blocni  22298  lnocni  22299
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-cnp 17284  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072  df-lno 22237  df-nmoo 22238  df-blo 22239  df-0o 22240
  Copyright terms: Public domain W3C validator