MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blof Unicode version

Theorem blof 21363
Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blof.1  |-  X  =  ( BaseSet `  U )
blof.2  |-  Y  =  ( BaseSet `  W )
blof.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
blof  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T : X --> Y )

Proof of Theorem blof
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( U 
LnOp  W )  =  ( U  LnOp  W )
2 blof.5 . . 3  |-  B  =  ( U  BLnOp  W )
31, 2bloln 21362 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  ( U  LnOp  W
) )
4 blof.1 . . 3  |-  X  =  ( BaseSet `  U )
5 blof.2 . . 3  |-  Y  =  ( BaseSet `  W )
64, 5, 1lnof 21333 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  ( U  LnOp  W ) )  ->  T : X
--> Y )
73, 6syld3an3 1227 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T : X --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684   -->wf 5251   ` cfv 5255  (class class class)co 5858   NrmCVeccnv 21140   BaseSetcba 21142    LnOp clno 21318    BLnOp cblo 21320
This theorem is referenced by:  nmblore  21364  nmblolbii  21377  blometi  21381  ubthlem3  21451  htthlem  21497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-lno 21322  df-blo 21324
  Copyright terms: Public domain W3C validator