MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Unicode version

Theorem bloln 21362
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4  |-  L  =  ( U  LnOp  W
)
bloln.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
bloln  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
2 bloln.4 . . . 4  |-  L  =  ( U  LnOp  W
)
3 bloln.5 . . . 4  |-  B  =  ( U  BLnOp  W )
41, 2, 3isblo 21360 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) ) )
54simprbda 606 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  B )  ->  T  e.  L )
653impa 1146 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    +oocpnf 8864    < clt 8867   NrmCVeccnv 21140    LnOp clno 21318   normOp OLDcnmoo 21319    BLnOp cblo 21320
This theorem is referenced by:  blof  21363  nmblolbii  21377  isblo3i  21379  blometi  21381  blocn2  21386  ubthlem2  21450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-blo 21324
  Copyright terms: Public domain W3C validator