MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Unicode version

Theorem bloln 22135
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4  |-  L  =  ( U  LnOp  W
)
bloln.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
bloln  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2389 . . . 4  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
2 bloln.4 . . . 4  |-  L  =  ( U  LnOp  W
)
3 bloln.5 . . . 4  |-  B  =  ( U  BLnOp  W )
41, 2, 3isblo 22133 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) ) )
54simprbda 607 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  B )  ->  T  e.  L )
653impa 1148 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4155   ` cfv 5396  (class class class)co 6022    +oocpnf 9052    < clt 9055   NrmCVeccnv 21913    LnOp clno 22091   normOp OLDcnmoo 22092    BLnOp cblo 22093
This theorem is referenced by:  blof  22136  nmblolbii  22150  isblo3i  22152  blometi  22154  blocn2  22159  ubthlem2  22223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-blo 22097
  Copyright terms: Public domain W3C validator