MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blopn Structured version   Unicode version

Theorem blopn 18535
Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
blopn  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  J )

Proof of Theorem blopn
StepHypRef Expression
1 mopni.1 . . . 4  |-  J  =  ( MetOpen `  D )
21blssopn 18530 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ran  ( ball `  D )  C_  J )
323ad2ant1 979 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ran  ( ball `  D
)  C_  J )
4 blelrn 18452 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )
53, 4sseldd 3351 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726    C_ wss 3322   ran crn 4882   ` cfv 5457  (class class class)co 6084   RR*cxr 9124   * Metcxmt 16691   ballcbl 16693   MetOpencmopn 16696
This theorem is referenced by:  neibl  18536  blnei  18537  methaus  18555  met1stc  18556  met2ndci  18557  metrest  18559  prdsxmslem2  18564  metcnp3  18575  zdis  18852  metdseq0  18889  metnrmlem2  18895  cnheibor  18985  cnllycmp  18986  nmhmcn  19133  lmmbr  19216  cfilfcls  19232  iscmet3lem2  19250  flimcfil  19271  bcthlem5  19286  ellimc3  19771  dvlipcn  19883  dvlip2  19884  psercn  20347  pserdvlem2  20349  dvlog2  20549  efopnlem2  20553  logtayl  20556  xrlimcnp  20812  efrlim  20813  lgamucov  24827  cnllyscon  24937  heicant  26253  ismtyhmeolem  26527  heibor1lem  26532  heibor1  26533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-bl 16702  df-mopn 16703  df-bases 16970
  Copyright terms: Public domain W3C validator