MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blres Unicode version

Theorem blres 17977
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2  |-  C  =  ( D  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
blres  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )

Proof of Theorem blres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3390 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
21sseli 3176 . . . . . . . . 9  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  Y )
3 blres.2 . . . . . . . . . . 11  |-  C  =  ( D  |`  ( Y  X.  Y ) )
43oveqi 5871 . . . . . . . . . 10  |-  ( P C x )  =  ( P ( D  |`  ( Y  X.  Y
) ) x )
5 ovres 5987 . . . . . . . . . 10  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P ( D  |`  ( Y  X.  Y
) ) x )  =  ( P D x ) )
64, 5syl5eq 2327 . . . . . . . . 9  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
72, 6sylan 457 . . . . . . . 8  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
87breq1d 4033 . . . . . . 7  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( P C x )  <  R  <->  ( P D x )  <  R ) )
98anbi2d 684 . . . . . 6  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( x  e.  X  /\  ( P C x )  < 
R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
109pm5.32da 622 . . . . 5  |-  ( P  e.  ( X  i^i  Y )  ->  ( (
x  e.  Y  /\  ( x  e.  X  /\  ( P C x )  <  R ) )  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
11103ad2ant2 977 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) )  <-> 
( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  <  R ) ) ) )
12 elin 3358 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
13 ancom 437 . . . . . . 7  |-  ( ( x  e.  X  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  X )
)
1412, 13bitri 240 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  Y  /\  x  e.  X ) )
1514anbi1i 676 . . . . 5  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( (
x  e.  Y  /\  x  e.  X )  /\  ( P C x )  <  R ) )
16 anass 630 . . . . 5  |-  ( ( ( x  e.  Y  /\  x  e.  X
)  /\  ( P C x )  < 
R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
1715, 16bitri 240 . . . 4  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
18 ancom 437 . . . 4  |-  ( ( ( x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y
)  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1911, 17, 183bitr4g 279 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  < 
R )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
20 xmetres 17928 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  ( X  i^i  Y ) ) )
213, 20syl5eqel 2367 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  C  e.  ( * Met `  ( X  i^i  Y ) ) )
22 elbl 17949 . . . 4  |-  ( ( C  e.  ( * Met `  ( X  i^i  Y ) )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
2321, 22syl3an1 1215 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
24 elin 3358 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i 
Y )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  Y
) )
25 inss1 3389 . . . . . . 7  |-  ( X  i^i  Y )  C_  X
2625sseli 3176 . . . . . 6  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  X )
27 elbl 17949 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2826, 27syl3an2 1216 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
2928anbi1d 685 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  Y )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
3024, 29syl5bb 248 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  Y
)  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  x  e.  Y ) ) )
3119, 23, 303bitr4d 276 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
x  e.  ( ( P ( ball `  D
) R )  i^i 
Y ) ) )
3231eqrdv 2281 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151   class class class wbr 4023    X. cxp 4687    |` cres 4691   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  metrest  18070  xrsmopn  18318  lebnumii  18464  blssp  26470  sstotbnd2  26498  blbnd  26511  ssbnd  26512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-xr 8871  df-xmet 16373  df-bl 16375
  Copyright terms: Public domain W3C validator