MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blrn Structured version   Unicode version

Theorem blrn 18440
Description: Membership in the range of the ball function. Note that  ran  ( ball `  D ) is the collection of all balls for metric 
D. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blrn  |-  ( D  e.  ( * Met `  X )  ->  ( A  e.  ran  ( ball `  D )  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x ( ball `  D
) r ) ) )
Distinct variable groups:    x, r, A    D, r, x    X, r, x

Proof of Theorem blrn
StepHypRef Expression
1 blf 18438 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
2 ffn 5592 . 2  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
3 ovelrn 6223 . 2  |-  ( (
ball `  D )  Fn  ( X  X.  RR* )  ->  ( A  e. 
ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
41, 2, 33syl 19 1  |-  ( D  e.  ( * Met `  X )  ->  ( A  e.  ran  ( ball `  D )  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x ( ball `  D
) r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    = wceq 1653    e. wcel 1726   E.wrex 2707   ~Pcpw 3800    X. cxp 4877   ran crn 4880    Fn wfn 5450   -->wf 5451   ` cfv 5455  (class class class)co 6082   RR*cxr 9120   * Metcxmt 16687   ballcbl 16689
This theorem is referenced by:  blss  18456  imasf1oxms  18520  prdsxmslem2  18560  blssioo  18827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-map 7021  df-xr 9125  df-psmet 16695  df-xmet 16696  df-bl 16698
  Copyright terms: Public domain W3C validator