MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blss Unicode version

Theorem blss 18347
Description: Any point  P in a ball  B can be centered in another ball that is a subset of  B. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss  |-  ( ( D  e.  ( * Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Distinct variable groups:    x, B    x, D    x, P    x, X

Proof of Theorem blss
Dummy variables  r 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 18337 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( B  e.  ran  ( ball `  D )  <->  E. y  e.  X  E. r  e.  RR*  B  =  ( y ( ball `  D
) r ) ) )
2 elbl 18324 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  <->  ( P  e.  X  /\  (
y D P )  <  r ) ) )
3 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  D  e.  ( * Met `  X
) )
4 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  y  e.  X )
5 simpr 448 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  P  e.  X )
6 xmetcl 18271 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
73, 4, 5, 6syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
8 simpl3 962 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  r  e.  RR* )
9 qbtwnxr 10719 . . . . . . . . . . 11  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR*  /\  ( y D P )  < 
r )  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) )
1093expia 1155 . . . . . . . . . 10  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR* )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
117, 8, 10syl2anc 643 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) ) )
12 qre 10512 . . . . . . . . . . 11  |-  ( z  e.  QQ  ->  z  e.  RR )
13 simpll1 996 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  D  e.  ( * Met `  X
) )
14 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  P  e.  X
)
15 simpll2 997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  y  e.  X
)
16 xmetsym 18287 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  =  ( y D P ) )
1713, 14, 15, 16syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  =  ( y D P ) )
18 simprrl 741 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y D P )  <  z
)
1917, 18eqbrtrd 4174 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <  z
)
20 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR )
21 xmetcl 18271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  e. 
RR* )
2213, 14, 15, 21syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR* )
23 rexr 9064 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  z  e.  RR* )
2423ad2antrl 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR* )
25 xrltle 10675 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P D y )  e.  RR*  /\  z  e.  RR* )  ->  (
( P D y )  <  z  -> 
( P D y )  <_  z )
)
2622, 24, 25syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( ( P D y )  < 
z  ->  ( P D y )  <_ 
z ) )
2719, 26mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  z
)
28 xmetlecl 18286 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  ( P  e.  X  /\  y  e.  X )  /\  (
z  e.  RR  /\  ( P D y )  <_  z ) )  ->  ( P D y )  e.  RR )
2913, 14, 15, 20, 27, 28syl122anc 1193 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR )
30 difrp 10578 . . . . . . . . . . . . . . 15  |-  ( ( ( P D y )  e.  RR  /\  z  e.  RR )  ->  ( ( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
3129, 20, 30syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( ( P D y )  < 
z  <->  ( z  -  ( P D y ) )  e.  RR+ )
)
3219, 31mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR+ )
3320, 29resubcld 9398 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR )
34 xrleid 10676 . . . . . . . . . . . . . . . . 17  |-  ( ( P D y )  e.  RR*  ->  ( P D y )  <_ 
( P D y ) )
3522, 34syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  ( P D y ) )
3620recnd 9048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  CC )
3729recnd 9048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  CC )
3836, 37nncand 9349 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( z  -  ( P D y ) ) )  =  ( P D y ) )
3935, 38breqtrrd 4180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  (
z  -  ( z  -  ( P D y ) ) ) )
40 blss2 18334 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  y  e.  X
)  /\  ( (
z  -  ( P D y ) )  e.  RR  /\  z  e.  RR  /\  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) ) )  -> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
z ) )
4113, 14, 15, 33, 20, 39, 40syl33anc 1199 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
z ) )
42 simpll3 998 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  r  e.  RR* )
43 simprrr 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <  r
)
44 xrltle 10675 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  RR*  /\  r  e.  RR* )  ->  (
z  <  r  ->  z  <_  r ) )
4524, 42, 44syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  < 
r  ->  z  <_  r ) )
4643, 45mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <_  r
)
47 ssbl 18346 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X )  /\  (
z  e.  RR*  /\  r  e.  RR* )  /\  z  <_  r )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4813, 15, 24, 42, 46, 47syl221anc 1195 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y (
ball `  D )
z )  C_  (
y ( ball `  D
) r ) )
4941, 48sstrd 3302 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
r ) )
50 oveq2 6029 . . . . . . . . . . . . . . 15  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( P
( ball `  D )
x )  =  ( P ( ball `  D
) ( z  -  ( P D y ) ) ) )
5150sseq1d 3319 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r )  <-> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
r ) ) )
5251rspcev 2996 . . . . . . . . . . . . 13  |-  ( ( ( z  -  ( P D y ) )  e.  RR+  /\  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
5332, 49, 52syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
5453expr 599 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  RR )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5512, 54sylan2 461 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  QQ )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5655rexlimdva 2774 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( E. z  e.  QQ  (
( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5711, 56syld 42 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5857expimpd 587 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( ( P  e.  X  /\  ( y D P )  < 
r )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
592, 58sylbid 207 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
60 eleq2 2449 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  <->  P  e.  ( y ( ball `  D ) r ) ) )
61 sseq2 3314 . . . . . . . 8  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P ( ball `  D ) x ) 
C_  B  <->  ( P
( ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
6261rexbidv 2671 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B 
<->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
6360, 62imbi12d 312 . . . . . 6  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B )  <->  ( P  e.  ( y ( ball `  D ) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) ) )
6459, 63syl5ibrcom 214 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
65643expib 1156 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  (
( y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) ) )
6665rexlimdvv 2780 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( E. y  e.  X  E. r  e.  RR*  B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
671, 66sylbid 207 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( B  e.  ran  ( ball `  D )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
68673imp 1147 1  |-  ( ( D  e.  ( * Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2651    C_ wss 3264   class class class wbr 4154   ran crn 4820   ` cfv 5395  (class class class)co 6021   RRcr 8923   RR*cxr 9053    < clt 9054    <_ cle 9055    - cmin 9224   QQcq 10507   RR+crp 10545   * Metcxmt 16613   ballcbl 16615
This theorem is referenced by:  blssex  18348  blin2  18350  metss  18429  metcnp3  18461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-xmet 16620  df-bl 16622
  Copyright terms: Public domain W3C validator