MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval Structured version   Unicode version

Theorem blval 18408
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blval
Dummy variables  r 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 18406 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 978 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ball `  D
)  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 733 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
y  =  P )
43oveq1d 6088 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( y D x )  =  ( P D x ) )
5 simprr 734 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
r  =  R )
64, 5breq12d 4217 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( ( y D x )  <  r  <->  ( P D x )  <  R ) )
76rabbidv 2940 . 2  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  ->  { x  e.  X  |  ( y D x )  <  r }  =  { x  e.  X  |  ( P D x )  < 
R } )
8 simp2 958 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  P  e.  X )
9 simp3 959 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  R  e.  RR* )
10 elfvdm 5749 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
11103ad2ant1 978 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  e.  dom  * Met )
12 rabexg 4345 . . 3  |-  ( X  e.  dom  * Met  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
1311, 12syl 16 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
142, 7, 8, 9, 13ovmpt2d 6193 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948   class class class wbr 4204   dom cdm 4870   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   RR*cxr 9111    < clt 9112   * Metcxmt 16678   ballcbl 16680
This theorem is referenced by:  elbl  18410  metss2lem  18533  stdbdbl  18539  nmhmcn  19120  lgamucov  24814  isbnd3  26484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-xr 9116  df-psmet 16686  df-xmet 16687  df-bl 16689
  Copyright terms: Public domain W3C validator