MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.3ii Unicode version

Theorem bm1.3ii 4144
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4141. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bm1.3ii.1  |-  E. x A. y ( ph  ->  y  e.  x )
Assertion
Ref Expression
bm1.3ii  |-  E. x A. y ( y  e.  x  <->  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem bm1.3ii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bm1.3ii.1 . . . . 5  |-  E. x A. y ( ph  ->  y  e.  x )
2 elequ2 1689 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
32imbi2d 307 . . . . . . 7  |-  ( x  =  z  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  y  e.  z ) ) )
43albidv 1611 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( ph  ->  y  e.  x )  <->  A. y
( ph  ->  y  e.  z ) ) )
54cbvexv 1943 . . . . 5  |-  ( E. x A. y (
ph  ->  y  e.  x
)  <->  E. z A. y
( ph  ->  y  e.  z ) )
61, 5mpbi 199 . . . 4  |-  E. z A. y ( ph  ->  y  e.  z )
7 ax-sep 4141 . . . 4  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
)
86, 7pm3.2i 441 . . 3  |-  ( E. z A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
98exan 1823 . 2  |-  E. z
( A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
10 19.42v 1846 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  <->  ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) ) )
11 bimsc1 904 . . . . . 6  |-  ( ( ( ph  ->  y  e.  z )  /\  (
y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  (
y  e.  x  <->  ph ) )
1211alanimi 1549 . . . . 5  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  A. y
( y  e.  x  <->  ph ) )
1312eximi 1563 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1410, 13sylbir 204 . . 3  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1514exlimiv 1666 . 2  |-  ( E. z ( A. y
( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
169, 15ax-mp 8 1  |-  E. x A. y ( y  e.  x  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684
This theorem is referenced by:  axpow3  4191  pwex  4193  zfpair2  4215  axun2  4514  uniex2  4515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-sep 4141
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator