Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2lem Unicode version

Theorem bnd2lem 26515
Description: Lemma for equivbnd2 26516 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.)
Hypothesis
Ref Expression
bnd2lem.1  |-  D  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
bnd2lem  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  Y  C_  X )

Proof of Theorem bnd2lem
StepHypRef Expression
1 bnd2lem.1 . . . . . 6  |-  D  =  ( M  |`  ( Y  X.  Y ) )
2 resss 4979 . . . . . 6  |-  ( M  |`  ( Y  X.  Y
) )  C_  M
31, 2eqsstri 3208 . . . . 5  |-  D  C_  M
4 dmss 4878 . . . . 5  |-  ( D 
C_  M  ->  dom  D 
C_  dom  M )
53, 4mp1i 11 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  dom  D 
C_  dom  M )
6 bndmet 26505 . . . . . 6  |-  ( D  e.  ( Bnd `  Y
)  ->  D  e.  ( Met `  Y ) )
7 metf 17895 . . . . . 6  |-  ( D  e.  ( Met `  Y
)  ->  D :
( Y  X.  Y
) --> RR )
8 fdm 5393 . . . . . 6  |-  ( D : ( Y  X.  Y ) --> RR  ->  dom 
D  =  ( Y  X.  Y ) )
96, 7, 83syl 18 . . . . 5  |-  ( D  e.  ( Bnd `  Y
)  ->  dom  D  =  ( Y  X.  Y
) )
109adantl 452 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  dom  D  =  ( Y  X.  Y ) )
11 metf 17895 . . . . . 6  |-  ( M  e.  ( Met `  X
)  ->  M :
( X  X.  X
) --> RR )
12 fdm 5393 . . . . . 6  |-  ( M : ( X  X.  X ) --> RR  ->  dom 
M  =  ( X  X.  X ) )
1311, 12syl 15 . . . . 5  |-  ( M  e.  ( Met `  X
)  ->  dom  M  =  ( X  X.  X
) )
1413adantr 451 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  dom  M  =  ( X  X.  X ) )
155, 10, 143sstr3d 3220 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  ( Y  X.  Y )  C_  ( X  X.  X
) )
16 dmss 4878 . . 3  |-  ( ( Y  X.  Y ) 
C_  ( X  X.  X )  ->  dom  ( Y  X.  Y
)  C_  dom  ( X  X.  X ) )
1715, 16syl 15 . 2  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  dom  ( Y  X.  Y
)  C_  dom  ( X  X.  X ) )
18 dmxpid 4898 . 2  |-  dom  ( Y  X.  Y )  =  Y
19 dmxpid 4898 . 2  |-  dom  ( X  X.  X )  =  X
2017, 18, 193sstr3g 3218 1  |-  ( ( M  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  Y  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152    X. cxp 4687   dom cdm 4689    |` cres 4691   -->wf 5251   ` cfv 5255   RRcr 8736   Metcme 16370   Bndcbnd 26491
This theorem is referenced by:  equivbnd2  26516  prdsbnd2  26519  cntotbnd  26520  cnpwstotbnd  26521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-met 16374  df-bnd 26503
  Copyright terms: Public domain W3C validator