Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1001 Unicode version

Theorem bnj1001 29306
Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1001.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1001.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj1001.6  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
bnj1001.13  |-  D  =  ( om  \  { (/)
} )
bnj1001.27  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch" )
Assertion
Ref Expression
bnj1001  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch"  /\  i  e. 
om  /\  suc  i  e.  p ) )

Proof of Theorem bnj1001
StepHypRef Expression
1 bnj1001.27 . 2  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch" )
2 bnj1001.6 . . . . 5  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
32simplbi 446 . . . 4  |-  ( et 
->  i  e.  n
)
43bnj708 29101 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
i  e.  n )
5 bnj1001.3 . . . . . 6  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
65bnj1232 29152 . . . . 5  |-  ( ch 
->  n  e.  D
)
76bnj706 29099 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  n  e.  D )
8 bnj1001.13 . . . . 5  |-  D  =  ( om  \  { (/)
} )
98bnj923 29114 . . . 4  |-  ( n  e.  D  ->  n  e.  om )
107, 9syl 15 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  n  e.  om )
11 elnn 4682 . . 3  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
124, 10, 11syl2anc 642 . 2  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
i  e.  om )
13 bnj1001.5 . . . . . 6  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
1413simp3bi 972 . . . . 5  |-  ( ta 
->  p  =  suc  n )
1514bnj707 29100 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  p  =  suc  n )
16 nnord 4680 . . . . . . 7  |-  ( n  e.  om  ->  Ord  n )
17 ordsucelsuc 4629 . . . . . . 7  |-  ( Ord  n  ->  ( i  e.  n  <->  suc  i  e.  suc  n ) )
189, 16, 173syl 18 . . . . . 6  |-  ( n  e.  D  ->  (
i  e.  n  <->  suc  i  e. 
suc  n ) )
1918biimpa 470 . . . . 5  |-  ( ( n  e.  D  /\  i  e.  n )  ->  suc  i  e.  suc  n )
20 eleq2 2357 . . . . 5  |-  ( p  =  suc  n  -> 
( suc  i  e.  p 
<->  suc  i  e.  suc  n ) )
2119, 20anim12i 549 . . . 4  |-  ( ( ( n  e.  D  /\  i  e.  n
)  /\  p  =  suc  n )  ->  ( suc  i  e.  suc  n  /\  ( suc  i  e.  p  <->  suc  i  e.  suc  n ) ) )
227, 4, 15, 21syl21anc 1181 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( suc  i  e.  suc  n  /\  ( suc  i  e.  p  <->  suc  i  e. 
suc  n ) ) )
23 bnj926 29115 . . 3  |-  ( ( suc  i  e.  suc  n  /\  ( suc  i  e.  p  <->  suc  i  e.  suc  n ) )  ->  suc  i  e.  p
)
2422, 23syl 15 . 2  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  suc  i  e.  p
)
251, 12, 243jca 1132 1  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch"  /\  i  e. 
om  /\  suc  i  e.  p ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    \ cdif 3162   (/)c0 3468   {csn 3653   Ord word 4407   suc csuc 4410   omcom 4672    Fn wfn 5266   ` cfv 5271    /\ w-bnj17 29027
This theorem is referenced by:  bnj1020  29311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-bnj17 29028
  Copyright terms: Public domain W3C validator