Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1014 Structured version   Unicode version

Theorem bnj1014 29333
Description: Technical lemma for bnj69 29381. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1014.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1014.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1014.13  |-  D  =  ( om  \  { (/)
} )
bnj1014.14  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj1014  |-  ( ( g  e.  B  /\  j  e.  dom  g )  ->  ( g `  j )  C_  trCl ( X ,  A ,  R ) )
Distinct variable groups:    A, f,
i, n, y    D, i    R, f, i, n, y    f, X, i, n, y    f, g, i    i, j    ph, i
Allowed substitution hints:    ph( y, f, g, j, n)    ps( y, f, g, i, j, n)    A( g, j)    B( y, f, g, i, j, n)    D( y, f, g, j, n)    R( g,
j)    X( g, j)

Proof of Theorem bnj1014
StepHypRef Expression
1 bnj1014.14 . . . . . . 7  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
2 nfcv 2574 . . . . . . . . 9  |-  F/_ i D
3 bnj1014.1 . . . . . . . . . . 11  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
4 bnj1014.2 . . . . . . . . . . 11  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
53, 4bnj911 29305 . . . . . . . . . 10  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  ->  A. i
( f  Fn  n  /\  ph  /\  ps )
)
65nfi 1561 . . . . . . . . 9  |-  F/ i ( f  Fn  n  /\  ph  /\  ps )
72, 6nfrex 2763 . . . . . . . 8  |-  F/ i E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps )
87nfab 2578 . . . . . . 7  |-  F/_ i { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
91, 8nfcxfr 2571 . . . . . 6  |-  F/_ i B
109nfcri 2568 . . . . 5  |-  F/ i  g  e.  B
11 nfv 1630 . . . . 5  |-  F/ i  j  e.  dom  g
1210, 11nfan 1847 . . . 4  |-  F/ i ( g  e.  B  /\  j  e.  dom  g )
13 nfv 1630 . . . 4  |-  F/ i ( g `  j
)  C_  trCl ( X ,  A ,  R
)
1412, 13nfim 1833 . . 3  |-  F/ i ( ( g  e.  B  /\  j  e. 
dom  g )  -> 
( g `  j
)  C_  trCl ( X ,  A ,  R
) )
1514nfri 1779 . 2  |-  ( ( ( g  e.  B  /\  j  e.  dom  g )  ->  (
g `  j )  C_ 
trCl ( X ,  A ,  R )
)  ->  A. i
( ( g  e.  B  /\  j  e. 
dom  g )  -> 
( g `  j
)  C_  trCl ( X ,  A ,  R
) ) )
16 a9ev 1669 . . 3  |-  E. i 
i  =  j
171bnj1317 29195 . . . . . . . 8  |-  ( g  e.  B  ->  A. f 
g  e.  B )
1817nfi 1561 . . . . . . 7  |-  F/ f  g  e.  B
19 nfv 1630 . . . . . . 7  |-  F/ f  i  e.  dom  g
2018, 19nfan 1847 . . . . . 6  |-  F/ f ( g  e.  B  /\  i  e.  dom  g )
21 nfv 1630 . . . . . 6  |-  F/ f ( g `  i
)  C_  trCl ( X ,  A ,  R
)
2220, 21nfim 1833 . . . . 5  |-  F/ f ( ( g  e.  B  /\  i  e. 
dom  g )  -> 
( g `  i
)  C_  trCl ( X ,  A ,  R
) )
23 eleq1 2498 . . . . . . 7  |-  ( f  =  g  ->  (
f  e.  B  <->  g  e.  B ) )
24 dmeq 5072 . . . . . . . 8  |-  ( f  =  g  ->  dom  f  =  dom  g )
2524eleq2d 2505 . . . . . . 7  |-  ( f  =  g  ->  (
i  e.  dom  f  <->  i  e.  dom  g ) )
2623, 25anbi12d 693 . . . . . 6  |-  ( f  =  g  ->  (
( f  e.  B  /\  i  e.  dom  f )  <->  ( g  e.  B  /\  i  e.  dom  g ) ) )
27 fveq1 5729 . . . . . . 7  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
2827sseq1d 3377 . . . . . 6  |-  ( f  =  g  ->  (
( f `  i
)  C_  trCl ( X ,  A ,  R
)  <->  ( g `  i )  C_  trCl ( X ,  A ,  R ) ) )
2926, 28imbi12d 313 . . . . 5  |-  ( f  =  g  ->  (
( ( f  e.  B  /\  i  e. 
dom  f )  -> 
( f `  i
)  C_  trCl ( X ,  A ,  R
) )  <->  ( (
g  e.  B  /\  i  e.  dom  g )  ->  ( g `  i )  C_  trCl ( X ,  A ,  R ) ) ) )
30 ssiun2 4136 . . . . . 6  |-  ( i  e.  dom  f  -> 
( f `  i
)  C_  U_ i  e. 
dom  f ( f `
 i ) )
31 ssiun2 4136 . . . . . . 7  |-  ( f  e.  B  ->  U_ i  e.  dom  f ( f `
 i )  C_  U_ f  e.  B  U_ i  e.  dom  f ( f `  i ) )
32 bnj1014.13 . . . . . . . 8  |-  D  =  ( om  \  { (/)
} )
333, 4, 32, 1bnj882 29299 . . . . . . 7  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  B  U_ i  e.  dom  f ( f `
 i )
3431, 33syl6sseqr 3397 . . . . . 6  |-  ( f  e.  B  ->  U_ i  e.  dom  f ( f `
 i )  C_  trCl ( X ,  A ,  R ) )
3530, 34sylan9ssr 3364 . . . . 5  |-  ( ( f  e.  B  /\  i  e.  dom  f )  ->  ( f `  i )  C_  trCl ( X ,  A ,  R ) )
3622, 29, 35chvar 1969 . . . 4  |-  ( ( g  e.  B  /\  i  e.  dom  g )  ->  ( g `  i )  C_  trCl ( X ,  A ,  R ) )
37 eleq1 2498 . . . . . . 7  |-  ( j  =  i  ->  (
j  e.  dom  g  <->  i  e.  dom  g ) )
3837anbi2d 686 . . . . . 6  |-  ( j  =  i  ->  (
( g  e.  B  /\  j  e.  dom  g )  <->  ( g  e.  B  /\  i  e.  dom  g ) ) )
39 fveq2 5730 . . . . . . 7  |-  ( j  =  i  ->  (
g `  j )  =  ( g `  i ) )
4039sseq1d 3377 . . . . . 6  |-  ( j  =  i  ->  (
( g `  j
)  C_  trCl ( X ,  A ,  R
)  <->  ( g `  i )  C_  trCl ( X ,  A ,  R ) ) )
4138, 40imbi12d 313 . . . . 5  |-  ( j  =  i  ->  (
( ( g  e.  B  /\  j  e. 
dom  g )  -> 
( g `  j
)  C_  trCl ( X ,  A ,  R
) )  <->  ( (
g  e.  B  /\  i  e.  dom  g )  ->  ( g `  i )  C_  trCl ( X ,  A ,  R ) ) ) )
4241equcoms 1694 . . . 4  |-  ( i  =  j  ->  (
( ( g  e.  B  /\  j  e. 
dom  g )  -> 
( g `  j
)  C_  trCl ( X ,  A ,  R
) )  <->  ( (
g  e.  B  /\  i  e.  dom  g )  ->  ( g `  i )  C_  trCl ( X ,  A ,  R ) ) ) )
4336, 42mpbiri 226 . . 3  |-  ( i  =  j  ->  (
( g  e.  B  /\  j  e.  dom  g )  ->  (
g `  j )  C_ 
trCl ( X ,  A ,  R )
) )
4416, 43bnj101 29090 . 2  |-  E. i
( ( g  e.  B  /\  j  e. 
dom  g )  -> 
( g `  j
)  C_  trCl ( X ,  A ,  R
) )
4515, 44bnj1131 29160 1  |-  ( ( g  e.  B  /\  j  e.  dom  g )  ->  ( g `  j )  C_  trCl ( X ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708    \ cdif 3319    C_ wss 3322   (/)c0 3630   {csn 3816   U_ciun 4095   suc csuc 4585   omcom 4847   dom cdm 4880    Fn wfn 5451   ` cfv 5456    predc-bnj14 29054    trClc-bnj18 29060
This theorem is referenced by:  bnj1015  29334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-dm 4890  df-iota 5420  df-fv 5464  df-bnj18 29061
  Copyright terms: Public domain W3C validator