Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Unicode version

Theorem bnj1029 29337
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )

Proof of Theorem bnj1029
Dummy variables  f 
i  m  n  p  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 228 . 2  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 biid 228 . 2  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
3 biid 228 . 2  |-  ( ( n  e.  ( om 
\  { (/) } )  /\  f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
4 biid 228 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e. 
trCl ( X ,  A ,  R )  /\  z  e.  pred ( y ,  A ,  R ) ) )
5 biid 228 . 2  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  <-> 
( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
6 biid 228 . 2  |-  ( ( i  e.  n  /\  y  e.  ( f `  i ) )  <->  ( i  e.  n  /\  y  e.  ( f `  i
) ) )
7 biid 228 . 2  |-  ( [. p  /  n ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
8 biid 228 . 2  |-  ( [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  [. p  /  n ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
9 biid 228 . 2  |-  ( [. p  /  n ]. (
n  e.  ( om 
\  { (/) } )  /\  f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
10 biid 228 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 biid 228 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
12 biid 228 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
13 eqid 2436 . 2  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
14 eqid 2436 . 2  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
15 eqid 2436 . 2  |-  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
16 eqid 2436 . 2  |-  ( f  u.  { <. n ,  U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 29336 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   [.wsbc 3161    \ cdif 3317    u. cun 3318   (/)c0 3628   {csn 3814   <.cop 3817   U_ciun 4093   suc csuc 4583   omcom 4845    Fn wfn 5449   ` cfv 5454    /\ w-bnj17 29050    predc-bnj14 29052    FrSe w-bnj15 29056    trClc-bnj18 29058    TrFow-bnj19 29060
This theorem is referenced by:  bnj1125  29361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701  ax-reg 7560
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-bnj17 29051  df-bnj14 29053  df-bnj13 29055  df-bnj15 29057  df-bnj18 29059  df-bnj19 29061
  Copyright terms: Public domain W3C validator