Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1039 Unicode version

Theorem bnj1039 29001
Description: Technical lemma for bnj69 29040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1039.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1039.2  |-  ( ps'  <->  [. j  /  i ]. ps )
Assertion
Ref Expression
bnj1039  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )

Proof of Theorem bnj1039
StepHypRef Expression
1 bnj1039.2 . 2  |-  ( ps'  <->  [. j  /  i ]. ps )
2 vex 2791 . . 3  |-  j  e. 
_V
3 bnj1039.1 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 nfra1 2593 . . . . 5  |-  F/ i A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
53, 4nfxfr 1557 . . . 4  |-  F/ i ps
65sbcgf 3054 . . 3  |-  ( j  e.  _V  ->  ( [. j  /  i ]. ps  <->  ps ) )
72, 6ax-mp 8 . 2  |-  ( [. j  /  i ]. ps  <->  ps )
81, 7, 33bitri 262 1  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   [.wsbc 2991   U_ciun 3905   suc csuc 4394   omcom 4656   ` cfv 5255    predc-bnj14 28713
This theorem is referenced by:  bnj1128  29020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator