Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1039 Structured version   Unicode version

Theorem bnj1039 29267
 Description: Technical lemma for bnj69 29306. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1039.1
bnj1039.2
Assertion
Ref Expression
bnj1039

Proof of Theorem bnj1039
StepHypRef Expression
1 bnj1039.2 . 2
2 vex 2951 . . 3
3 bnj1039.1 . . . . 5
4 nfra1 2748 . . . . 5
53, 4nfxfr 1579 . . . 4
65sbcgf 3216 . . 3
72, 6ax-mp 8 . 2
81, 7, 33bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  wral 2697  cvv 2948  wsbc 3153  ciun 4085   csuc 4575  com 4837  cfv 5446   c-bnj14 28979 This theorem is referenced by:  bnj1128  29286 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator