Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1049 Structured version   Unicode version

Theorem bnj1049 29343
 Description: Technical lemma for bnj69 29379. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1049.1
bnj1049.2
Assertion
Ref Expression
bnj1049

Proof of Theorem bnj1049
StepHypRef Expression
1 df-ral 2710 . 2
2 bnj1049.2 . . . . . . 7
32imbi2i 304 . . . . . 6
4 impexp 434 . . . . . 6
53, 4bitr4i 244 . . . . 5
6 bnj1049.1 . . . . . . . . . 10
76simplbi 447 . . . . . . . . 9
87bnj708 29124 . . . . . . . 8
98pm4.71ri 615 . . . . . . 7
109bicomi 194 . . . . . 6
1110imbi1i 316 . . . . 5
125, 11bitri 241 . . . 4
1312, 2bitr4i 244 . . 3
1413albii 1575 . 2
151, 14bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549   wcel 1725  wral 2705  cfv 5454   w-bnj17 29050 This theorem is referenced by:  bnj1052  29344 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566 This theorem depends on definitions:  df-bi 178  df-an 361  df-ral 2710  df-bnj17 29051
 Copyright terms: Public domain W3C validator