Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Unicode version

Theorem bnj105 28750
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105  |-  1o  e.  _V

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 6491 . 2  |-  1o  =  { (/) }
2 p0ex 4197 . 2  |-  { (/) }  e.  _V
31, 2eqeltri 2353 1  |-  1o  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788   (/)c0 3455   {csn 3640   1oc1o 6472
This theorem is referenced by:  bnj106  28900  bnj118  28901  bnj121  28902  bnj125  28904  bnj130  28906  bnj153  28912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-pw 3627  df-sn 3646  df-suc 4398  df-1o 6479
  Copyright terms: Public domain W3C validator