Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Unicode version

Theorem bnj105 29066
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105  |-  1o  e.  _V

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 6507 . 2  |-  1o  =  { (/) }
2 p0ex 4213 . 2  |-  { (/) }  e.  _V
31, 2eqeltri 2366 1  |-  1o  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   _Vcvv 2801   (/)c0 3468   {csn 3653   1oc1o 6488
This theorem is referenced by:  bnj106  29216  bnj118  29217  bnj121  29218  bnj125  29220  bnj130  29222  bnj153  29228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-pw 3640  df-sn 3659  df-suc 4414  df-1o 6495
  Copyright terms: Public domain W3C validator