Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Unicode version

Theorem bnj105 28428
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105  |-  1o  e.  _V

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 6673 . 2  |-  1o  =  { (/) }
2 p0ex 4328 . 2  |-  { (/) }  e.  _V
31, 2eqeltri 2458 1  |-  1o  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1717   _Vcvv 2900   (/)c0 3572   {csn 3758   1oc1o 6654
This theorem is referenced by:  bnj106  28578  bnj118  28579  bnj121  28580  bnj125  28582  bnj130  28584  bnj153  28590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-pw 3745  df-sn 3764  df-suc 4529  df-1o 6661
  Copyright terms: Public domain W3C validator