Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1053 Structured version   Unicode version

Theorem bnj1053 29347
 Description: Technical lemma for bnj69 29381. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1053.1
bnj1053.2
bnj1053.3
bnj1053.4
bnj1053.5
bnj1053.6
bnj1053.7
bnj1053.8
bnj1053.9
bnj1053.10
bnj1053.37
Assertion
Ref Expression
bnj1053
Distinct variable groups:   ,,,,   ,,,,   ,,,,   ,   ,,,,   ,   ,,,,   ,   ,   ,,,,   ,,,,   ,,   ,
Allowed substitution hints:   (,,,,)   (,,,,,)   (,,,,,)   (,)   (,)   (,,,,)   (,,,,,)   (,,,,,)   ()   (,)   (,,,,)   ()   (,,,,,)   ()

Proof of Theorem bnj1053
StepHypRef Expression
1 bnj1053.1 . 2
2 bnj1053.2 . 2
3 bnj1053.3 . 2
4 bnj1053.4 . 2
5 bnj1053.5 . 2
6 bnj1053.6 . 2
7 bnj1053.7 . 2
8 bnj1053.8 . 2
9 bnj1053.9 . 2
10 bnj1053.10 . 2
117bnj923 29139 . . . . . 6
12 nnord 4855 . . . . . 6
13 ordfr 4598 . . . . . 6
1411, 12, 133syl 19 . . . . 5
153, 14bnj769 29133 . . . 4
1615bnj707 29125 . . 3
17 bnj1053.37 . . 3
1816, 17jca 520 . 2
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18bnj1052 29346 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   w3a 937   wceq 1653   wcel 1726  cab 2424  wral 2707  wrex 2708  cvv 2958  wsbc 3163   cdif 3319   wss 3322  c0 3630  csn 3816  ciun 4095   class class class wbr 4214   cep 4494   wfr 4540   word 4582   csuc 4585  com 4847   wfn 5451  cfv 5456   w-bnj17 29052   c-bnj14 29054   w-bnj15 29058   c-bnj18 29060   w-bnj19 29062 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-fn 5459  df-bnj17 29053  df-bnj18 29061
 Copyright terms: Public domain W3C validator