Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1095 Unicode version

Theorem bnj1095 28813
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1095.1  |-  ( ph  <->  A. x  e.  A  ps )
Assertion
Ref Expression
bnj1095  |-  ( ph  ->  A. x ph )

Proof of Theorem bnj1095
StepHypRef Expression
1 bnj1095.1 . 2  |-  ( ph  <->  A. x  e.  A  ps )
2 hbra1 2592 . 2  |-  ( A. x  e.  A  ps  ->  A. x A. x  e.  A  ps )
31, 2hbxfrbi 1555 1  |-  ( ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   A.wral 2543
This theorem is referenced by:  bnj1379  28863  bnj605  28939  bnj594  28944  bnj607  28948  bnj911  28964  bnj964  28975  bnj983  28983  bnj1093  29010  bnj1123  29016  bnj1145  29023  bnj1417  29071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-ral 2548
  Copyright terms: Public domain W3C validator